Identifikasi Aliran Energi Listrik pada Mesin CNC Machining Center

Authors

  • Sony Harbintoro BBSPJILM – Kementerian Perindustrian
  • Rafika Ratik Srimurni Universitas Islam Nusantara

DOI:

https://doi.org/10.30588/jeemm.v7i2.1598

Keywords:

identification, energy flow, cnc machining center, energy consumption

Abstract

CNC machine tools have been widely used in the process and manufacturing industries, which have the potential to increase the intensity of electrical energy consumption so that energy efficiency is needed. Energy efficiency is a necessity for the sustainability of the process and manufacturing industrial sector which will be related to energy costs and environmental factors. In order to carry out energy efficiency, it is necessary to identify the consumption of electrical energy by tracing and mapping the electrical energy flow to the components in a CNC machining center machine, so opportunities for energy savings can be known. This research was conducted by collecting data by monitoring energy consumption in stand-by, setting and cutting machine conditions. Cutting tests are carried out to determine the energy consumption of each machine component that affects energy use. After that it can be seen the energy flow pattern by classifying the energy user components into primary and secondary components. Based on the analysis of electrical energy consumption data during the cutting process, it is known that the significat energy users are the spindle motor, the axis feed motor (X, Y, Z) and the coolant motor.

References

Ahadi Khalif., S. T. G. (2019). Analisis konsumsi energi listrik pada proses pembekuan dan penyimpanan ikan. Ketenagalistrikan Dan Energi Terbarukan, 18(1), 11–22.

Chris, M., Taylor, M., & Crawforth, P. (2020). Resource consumption and process performancein minimum quantity lubricated milling of of tool steel. Procedia Manufacturing, 43, 463–470. http://doi.org/10.1016/j.promfg.2020.02.187

Harbintoro, S. (2014). Penelitian efisiensi energi pada mesin horizontal boring and milling. Metal Indonesia, 36, 77 – 83. http://doi.org/10.32423/jmi.2014.v36.76-83

Harbintoro, S., & Krisnadi, L. (2020). Pembuatan inti stator motor listrik dengan menggunakan proses milling profil electric motor stator core making using profile milling process. Jurnal Riset Teknologi Industri, 14(2), 209–219.

Hu, L., Liu, Y., Lohse, N., Tang, R., Lv, J., Peng, C., & Evans, S. (2017). Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed. Energy, 139, 935–946. http://doi.org/10.1016/j.energy.2017.08.032

Lv, J., Tang, R., Tang, W., Liu, Y., & Zhang, Y. (2017). An investigation into reducing the spindle acceleration energy consumption of machine tools. Journal of Cleaner Production, 143, 794–803. http://doi.org/10.1016/j.jclepro.2016.12.045

Paetzold, J., Kolouch, M., Wittstock, V., & Putz, M. (2017). Methodology for process-independent energetic assessment of machine tools. Procedia Manufacturing, 8(October 2016), 254–261. http://doi.org/10.1016/j.promfg.2017.02.032

Shabi, L., Weber, J., & Weber, J. (2017). Analysis of the Energy Consumption of Fluidic Systems in Machine Tools. Procedia CIRP, 63, 573–579. http://doi.org/10.1016/j.procir.2017.03.348

Sihag, N., Singh, K., & Pundir, S. (2018). Development of a structured algorithm to identify the status of a machine tool to improve energy and time efficiencies. Procedia CIRP, 69(May), 294–299. http://doi.org/10.1016/j.procir.2017.11.081

Stief, P., Dantan, J., Etienne, A., Siadat, A., & Design, C. (2019). Multi-objective optimization of machining parameters to minimize surface roughness and power consumption using TOPSIS. Procedia CIRP, 86, 116–120. http://doi.org/10.1016/j.procir.2020.01.036

Triebe, M. J., Mendis, G. P., Zhao, F., & Sutherland, J. W. (2018). Understanding energy consumption in a machine tool through energy mapping. Procedia CIRP, 69(May), 259–264. http://doi.org/10.1016/j.procir.2017.11.041

Um, J., Gontarz, A., & Stroud, I. (2015). Developing energy estimation model based on Sustainability KPI of machine tools. Procedia CIRP, 26, 217–222. http://doi.org/10.1016/j.procir.2015.03.002

Wirtz, A., Biermann, D., Meißner, M., Wiederkehr, P., & Myrzik, J. (2018). Evaluation of cutting processes using geometric physically-based process simulations in view of the electric power consumption of machine tools. Procedia CIRP, 79(i), 602–607. http://doi.org/10.1016/j.procir.2019.02.083

Wirtz, A., Meißner, M., Wiederkehr, P., & Myrzik, J. (2018). Simulation-assisted investigation of the electric power consumption of milling processes and machine tools. Procedia CIRP, 67, 87–92. http://doi.org/10.1016/j.procir.2017.12.181

Yi li, Krenkel Nicole, A. J. c. (2018). An energy model of machine tools for selective laser melting. Procedia CIRP, 78, 67 – 72. http://doi.org/10.1016/j.procir.2018.08.302

Zhou, L., Li, J., Li, F., Meng, Q., Li, J., & Xu, X. (2015). Energy consumption model and energy efficiency of machine tools : a comprehensive literature review. Journal of Cleaner Production, 1 – 14. http://doi.org/10.1016/j.jclepro.2015.05.093

Zhu, P., Stief, P., Dantan, J., Etienne, A., & Siadat, A. (2018). Energy Consumption Characteristics and Influence on Surface Quality in Milling. Procedia CIRP, 71, 111–115. http://doi.org/10.1016/j.procir.2018.05.081

Downloads

Published

2023-11-15

How to Cite

Harbintoro, S., & Srimurni, R. R. (2023). Identifikasi Aliran Energi Listrik pada Mesin CNC Machining Center. Jurnal Engine: Energi, Manufaktur, Dan Material, 7(2), 78–85. https://doi.org/10.30588/jeemm.v7i2.1598

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.