Ketahanan Korosi Sambungan Friction Stir Welding dengan Variasi Material Pin Tool
DOI:
https://doi.org/10.30588/jeemm.v4i2.768Keywords:
friction stir welding (FSW), aluminum, alumunium, welding, las, corrosion, korosi, pin toolAbstract
The use of friction stir welding (FSW) for welding materials that have low weldability such as aluminum is a breakthrough in manufacturing. Therefore, FSW is widely used in aircraft structures. FSW has advantages such as superior mechanical properties, green manufacturing, energy saving, and others. Despite its advantages, there have been very few studies analyzing corrosion in FSW. This study aims to find out whether there is corrosion in the FSW connection with the variations of the pin material which serves as a soft metal stirrer in the FSW process. The method of joining the material is carried out by a friction stir welding (FSW) process using the pin tool ST60, ST60 hardened, and stainless-steel with a plate-shaped specimen. After friction stir welding (FSW) connection and temperature measurement on the specimen, then the specimen is cleaned and weighed. After that, corrosion testing was carried out for 14 days (336 hours) using the immersion test method, which was immersed in seawater corrosive media. Calculation of the corrosion rate using the weight loss method. Then take photos of the microstructure to determine the type of corrosion that is formed. The lowest corrosion rate was on the specimen with a stainless-steel pin tool with an average corrosion rate of 0.3254 mpy. The corrosion that is formed on specimens that has been welded is a type of exfoliation corrosion and corrosion causes pits to occur.
Penggunaan friction stir welding (FSW) untuk pengelasan material yang memiliki mampu las rendah seperti alumunium merupakan terobosan dalam dunia manufaktur. Oleh karena itu, FSW banyak digunakan dalam struktur pesawat terbang. FSW memiliki keunggulan seperti sifat mekanis yang superior, manufaktur hijau, hemat energi, dan lain lain. Terlepas keunggulannya, hanya terdapat sedikit penelitian yang menganalisis korosi dalam FSW. Penelitian ini bertujuan untuk mencari tahu apakah ada korosi dalam penyambungan FSW dengan variasi material pin yang bertugas sebagai pengaduk logam lunak dalam prosess FSW. Metode penyambungan material dilakukan dengan proses friction stir welding (FSW) menggunakan pin tool ST60, ST60 hardened, dan stainless-steel dengan spesimen berbentuk plat. Setelah dilakukan sambungan friction stir welding (FSW) dan pengukuran temperatur pada spesimen, selanjutnya dilakukan pembersihan spesimen dan penimbangan. Setelah itu dilakukan pengujian korosi selama 14 hari (336 jam) dengan menggunakan metode immersion test yaitu direndam dengan media korosif air laut. Perhitungan laju korosi dengan manggunakan metode weight loss. Kemudian dilakukan pengambilan foto struktur mikro untuk mengetahui jenis korosi yang terbentuk. Nilai laju korosi yang paling rendah yaitu pada spesimen dengan pin tool stainless-steel dengan nilai rata-rata laju korosi 0,3254 mpy. Korosi yang terbentuk pada spesimen yang telah dilakukan pengelasan merupakan jenis exfoliation corrosion dan korosi menyebabkan terjadinya pits.
References
Abolusoro, O. P., & Akinlabi, E. T. (2019). Wear and Corrosion Behaviour of Friction Stir Welded Aluminium Alloys-An Overview. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 9(3), 967-982. doi:10.24247/ijmperdjun2019105
Anggoro, S. (2017). Pengaruh Perlakuan Panas Quenching dan Tempering terhadap Laju Korosi pada Baja AISI 420. Jurnal Engine: Energi, Manufaktur, dan Material, 1(2), 19-29. doi:10.30588/jeemm.v1i2.257
Chien, C. H., Lin, W. B., & Chen, T. (2011). Optimal FSW Process Parameters for Aluminum Alloys AA5083. Journal of the Chinese Institute of Engineers, 34(1), 99-105. doi:10.1080/02533839.2011.553024
Dialami, N., Cervera, M., & Chiumenti, M. (2019). Effect of the Tool Tilt Angle on the Heat Generation and the Material Flow in Friction Stir Welding. Metals, 9(1), 28. doi:doi.org/10.3390/met9010028
Dialami, N., Cervera, M., & Chiumenti, M. (2020). Defect Formation and Material Flow in Friction Stir Welding. European Journal of Mechanics - A/Solids, 80, 103912. doi:10.1016/j.euromechsol.2019.103912
Huda, Z., Taib, N. I., & Zaharinie, T. (2009). Characterization of 2024-T3: An Aerospace Aluminum Alloy. Materials Chemistry and Physics, 113(2-3), 515-517. doi:10.1016/j.matchemphys.2008.09.050
Jatimurti, W., Kurniawan, F., & Kurniawan, B. A. (2019). Analisa Kecepatan Pengelasan dan Kecepatan Putar Mata Pahat terhadap Konduktivitas Listrik Sambungan Aluminium dan Tembaga Hasil Friction Stir Welding (FSW). Jurnal Engine: Energi, Manufaktur, dan Material, 3(2), 39-46. doi:10.30588/jeemm.v3i2.536
Jiang, W. H., & Kovacevic, R. (2004). Feasibility Study of Friction Stir Welding of 6061-T6 Aluminium Alloy with AISI 1018 Steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(10), 1323-1331. doi:10.1243/0954405042323612
Kundu, J., Ghangas, G., Rattan, N., & Kumar, M. (2017). “Friction Stir Welding: Merits over other Joining Processes. International Journal of Current Engineering and Technology, 7(3), 1175-1177.
Pradeep, K. M., Amarnath, K., & Sunil, K. M. (2015). A Review on Heat Generation in Metal Cutting. International Journal of Engineering and Management Research (IJEMR), 5(4), 193-197.
Senthilraj, K., Kannan, P. R., Suresh, P., & Sekar, T. (2020). Corrosion and Fatigue Study on FSW and GTAW Welded Joints of AA7075-T6. Journal of Xidian University, 14(5), 5484-5492. doi:10.37896/jxu14.5/594
Sukarjo, H., & Surahman, A. (2017). Pengaruh Korosi terhadap Kekuatan Tarik Macaroni Tubing P110 1.900"x4.19 lbs/ft. Jurnal Engine: Energi, Manufaktur, dan Material, 1(1), 1-10. doi:10.30588/jeemm.v1i1.223
Wahyudianto, F. A., & Yadie, E. (2017). Corrosion Behavior of AA5083 Friction Stirred Metal Welds Joints inside 3,5% NaCl Solution. Prosiding SNTTM, XVI, 77-80.
Wartono, W. (2020). Pengaruh Shot Peeningterhadap Laju Perambatan Retak Fatik Sambungan Friction Stir Welding pada Aluminium Seri 5083. Jurnal Engine: Energi, manufaktur, dan Material, 4(1), 20-26. doi:10.30588/jeemm.v4i1.728
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with Jurnal Engine: Energi, Manufaktur, dan Material agree to the following terms:
Authors retain copyright and grant the Jurnal Engine: Energi, Manufaktur, dan Material right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in Jurnal Engine: Energi, Manufaktur, dan Material. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Engine: Energi, Manufaktur, dan Material. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).