Pemilihan Algoritma Machine Learning Yang Optimal Untuk Prediksi Sifat Mekanik Aluminium
Abstract
Keywords
Full Text:
PDFReferences
Agrawal, A., Deshpande, P. D., Cecen, A., Basavarsu, G. P., Choudhary, A. N., & Kalidindi, S. R. (2014). Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integrating Materials and Manufacturing Innovation, 3(1), 90–108. https://doi.org/10.1186/2193-9772-3-8
Amiri, N., Farrahi, G. H., Kashyzadeh, K. R., & Chizari, M. (2020). Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints. Journal of Manufacturing Processes, 52, 26–34. https://doi.org/10.1016/j.jmapro.2020.01.047
Antonio Augusto Morini, Manuel J. Ribeiro, D. H. (2019). Early-stage materials selection based on embodied energy and carbon footprint. Materials & Design, 178, 107861. https://www.sciencedirect.com/science/article/pii/S0264127519302990
Branco, R. B. (2018). Mechanical Behaviour of Aluminium Alloys. MDPI Applied Sciences.
D. Merayo, A. R.-P. and A. M. C. (2020). Prediction of Physical and Mechanical Properties for Metallic Materials Selection Using Big Data and Artificial Neural Networks. IEEE Access, 8, 13444–13456. https://doi.org/10.1109/ACCESS.2020.2965769.
D Leni, F Earnestly, R Sumiati, A Adriansyah, Y. K. (2023). Evaluasi sifat mekanik baja paduan rendah bedasarkan komposisi kimia dan suhu perlakuan panas menggunakan teknik exploratory data analysis ( EDA ). Dinamika Teknik Mesin, 13(1), 74–83.
Desmarita Leni, Yuda Perdana kusuma, Ruzita Sumiati, Muchlisinalahuddin, A. (2022). Perbandingan Alogaritma Machine Learning Untuk Prediksi Sifat Mekanik Pada Baja Paduan Rendah. 5(2), 167–174. https://jurnal.umsu.ac.id/index.php/RMME/article/view/11407
George Krauss. (2015). Steels: processing, structure, and performance (Second edi). ASM International. https://books.google.co.id/books?hl=id&lr=&id=ETJ7CgAAQBAJ&oi=fnd&pg=PR11&dq=Krauss,+G.+(2015).+Steels:+Processing,+Structure,+and+Performance%3B+ASM+International.+Russell,+OH,+USA:+Asm+International&ots=Nyj46WRGs0&sig=Htf3twiJgA2VdS2oWAGzCKog8dI&redir_esc=y#v=onepage&q&f=false
Hutchinson, B., Hagström, J., Karlsson, O., Lindell, D., Tornberg, M., Lindberg, F., & Thuvander, M. (2011). Microstructures and hardness of as-quenched martensites (0.1-0.5%C). Acta Materialia, 59(14), 5845–5858. https://doi.org/10.1016/j.actamat.2011.05.061
Intan, I., Ghani, S. A. D., Nurdin, & Koswara, A. T. C. (2021). Performance Analysis of Weather Forecasting using Machine Learning Algorithms. Jurnal Pekommas, 6(2), 1–8. https://doi.org/10.30818/jpkm.2021.2060221
Kevin P. Murphy. (2012). Machine learning: a probabilistic perspective. The MIT Press. https://books.google.co.id/books?hl=id&lr=&id=RC43AgAAQBAJ&oi=fnd&pg=PR7&dq=Murphy,+K.+P.+(2012).+Machine+learning:+a+probabilistic+perspective.+MIT+press.&ots=umnxcDOv5b&sig=_dgX1nN92fUKC0vjj2dUrdRort8&redir_esc=y#v=onepage&q=Murphy%2C K. P. (2012). Machine learning%3A a probabilistic perspective. MIT press.&f=false
Ling Qiao, Zibo Wang, J. Z. (2020). Application of improved GRNN model to predict interlamellar spacing and mechanical properties of hypereutectoid steel. Materials Science and Engineering, A, 792, 139845. https://doi.org/https://doi.org/10.1016/j.msea.2020.139845.
Merayo, D., Rodríguez-Prieto, A., & Camacho, A. M. (2020). Prediction of mechanical properties by artificial neural networks to characterize the plastic behavior of aluminum alloys. Materials, 13(22), 1–22. https://doi.org/10.3390/ma13225227
Prasetyo, A. B., & Laksana, T. G. (2022). Optimasi Algoritma K-Nearest Neighbors dengan Teknik Cross Validation Dengan Streamlit (Studi Data: Penyakit Diabetes). Journal of Applied Informatics and Computing (JAIC), 6(2), 194. http://jurnal.polibatam.ac.id/index.php/JAIC
Sandhya, N., Sowmya, V., Bandaru, C. R., & Babu, G. R. (2019). Prediction of mechanical properties of steel using data science techniques. Int. J. Recent Technol. Eng, 235–241.
Usgs. (2022). effect-aluminium-and-sodium-impurities-vitro-toxicity-and-pro-inflammatory-potential. https://www.usgs.gov/publications/effect-aluminium-and-sodium-impurities-vitro-toxicity-and-pro-inflammatory-potential%0A
Weinbub, J., Wastl, M., Rupp, K., Rudolf, F., & Selberherr, S. (2015). ViennaMaterials - A dedicated material library for computational science and engineering. Applied Mathematics and Computation, 267, 282–293. https://doi.org/10.1016/j.amc.2015.03.094
DOI: http://dx.doi.org/10.30588/jeemm.v7i1.1490
Article Metrics
Abstract view : 223 timesPDF - 0 times
Article Metrics
Abstract view : 223 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Desmarita Leni

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Engine: Energi, Manufaktur, dan Material is licensed under a Creative Commons Attribution 4.0 International License.