Pemilihan Algoritma Machine Learning Yang Optimal Untuk Prediksi Sifat Mekanik Aluminium

Authors

  • Desmarita Leni Universitas Muhammadiyah Sumatera Barat

DOI:

https://doi.org/10.30588/jeemm.v7i1.1490

Keywords:

Model, Machine Learning, Aluminum, Tensile Strength, Algorithm

Abstract

This study designs and compares optimal machine learning models to predict the mechanical properties of aluminum, including Yield Strength (YS) and Tensile Strength (TS), based on the percentage composition of aluminum's chemical elements. The machine learning modeling in this study has nine input variables consisting of aluminum chemical elements such as Al, Mg, Zn, Ti, Cu, Mn, Cr, Fe, Si, and two output or target variables consisting of YS and TS. Additionally, Heatmap correlation is used to observe the correlation between chemical elements and the mechanical properties of aluminum. Three machine learning algorithms, namely Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN), are compared in this study. The comparison of these algorithms shows that Random Forest (RF) outperforms the other algorithms in predicting YS with MAE of 11.44, RMSE of 14.282, and R value of 0.93. On the other hand, ANN performs better in predicting TS with MAE of 19.593, RMSE of 22.005, and R value of 0.947.

References

Agrawal, A., Deshpande, P. D., Cecen, A., Basavarsu, G. P., Choudhary, A. N., & Kalidindi, S. R. (2014). Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integrating Materials and Manufacturing Innovation, 3(1), 90–108. https://doi.org/10.1186/2193-9772-3-8

Amiri, N., Farrahi, G. H., Kashyzadeh, K. R., & Chizari, M. (2020). Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints. Journal of Manufacturing Processes, 52, 26–34. https://doi.org/10.1016/j.jmapro.2020.01.047

Antonio Augusto Morini, Manuel J. Ribeiro, D. H. (2019). Early-stage materials selection based on embodied energy and carbon footprint. Materials & Design, 178, 107861. https://www.sciencedirect.com/science/article/pii/S0264127519302990

Branco, R. B. (2018). Mechanical Behaviour of Aluminium Alloys. MDPI Applied Sciences.

D. Merayo, A. R.-P. and A. M. C. (2020). Prediction of Physical and Mechanical Properties for Metallic Materials Selection Using Big Data and Artificial Neural Networks. IEEE Access, 8, 13444–13456. https://doi.org/10.1109/ACCESS.2020.2965769.

D Leni, F Earnestly, R Sumiati, A Adriansyah, Y. K. (2023). Evaluasi sifat mekanik baja paduan rendah bedasarkan komposisi kimia dan suhu perlakuan panas menggunakan teknik exploratory data analysis ( EDA ). Dinamika Teknik Mesin, 13(1), 74–83.

Desmarita Leni, Yuda Perdana kusuma, Ruzita Sumiati, Muchlisinalahuddin, A. (2022). Perbandingan Alogaritma Machine Learning Untuk Prediksi Sifat Mekanik Pada Baja Paduan Rendah. 5(2), 167–174. https://jurnal.umsu.ac.id/index.php/RMME/article/view/11407

George Krauss. (2015). Steels: processing, structure, and performance (Second edi). ASM International. https://books.google.co.id/books?hl=id&lr=&id=ETJ7CgAAQBAJ&oi=fnd&pg=PR11&dq=Krauss,+G.+(2015).+Steels:+Processing,+Structure,+and+Performance%3B+ASM+International.+Russell,+OH,+USA:+Asm+International&ots=Nyj46WRGs0&sig=Htf3twiJgA2VdS2oWAGzCKog8dI&redir_esc=y#v=onepage&q&f=false

Hutchinson, B., Hagström, J., Karlsson, O., Lindell, D., Tornberg, M., Lindberg, F., & Thuvander, M. (2011). Microstructures and hardness of as-quenched martensites (0.1-0.5%C). Acta Materialia, 59(14), 5845–5858. https://doi.org/10.1016/j.actamat.2011.05.061

Intan, I., Ghani, S. A. D., Nurdin, & Koswara, A. T. C. (2021). Performance Analysis of Weather Forecasting using Machine Learning Algorithms. Jurnal Pekommas, 6(2), 1–8. https://doi.org/10.30818/jpkm.2021.2060221

Kevin P. Murphy. (2012). Machine learning: a probabilistic perspective. The MIT Press. https://books.google.co.id/books?hl=id&lr=&id=RC43AgAAQBAJ&oi=fnd&pg=PR7&dq=Murphy,+K.+P.+(2012).+Machine+learning:+a+probabilistic+perspective.+MIT+press.&ots=umnxcDOv5b&sig=_dgX1nN92fUKC0vjj2dUrdRort8&redir_esc=y#v=onepage&q=Murphy%2C K. P. (2012). Machine learning%3A a probabilistic perspective. MIT press.&f=false

Ling Qiao, Zibo Wang, J. Z. (2020). Application of improved GRNN model to predict interlamellar spacing and mechanical properties of hypereutectoid steel. Materials Science and Engineering, A, 792, 139845. https://doi.org/https://doi.org/10.1016/j.msea.2020.139845.

Merayo, D., Rodríguez-Prieto, A., & Camacho, A. M. (2020). Prediction of mechanical properties by artificial neural networks to characterize the plastic behavior of aluminum alloys. Materials, 13(22), 1–22. https://doi.org/10.3390/ma13225227

Prasetyo, A. B., & Laksana, T. G. (2022). Optimasi Algoritma K-Nearest Neighbors dengan Teknik Cross Validation Dengan Streamlit (Studi Data: Penyakit Diabetes). Journal of Applied Informatics and Computing (JAIC), 6(2), 194. http://jurnal.polibatam.ac.id/index.php/JAIC

Sandhya, N., Sowmya, V., Bandaru, C. R., & Babu, G. R. (2019). Prediction of mechanical properties of steel using data science techniques. Int. J. Recent Technol. Eng, 235–241.

Usgs. (2022). effect-aluminium-and-sodium-impurities-vitro-toxicity-and-pro-inflammatory-potential. https://www.usgs.gov/publications/effect-aluminium-and-sodium-impurities-vitro-toxicity-and-pro-inflammatory-potential%0A

Weinbub, J., Wastl, M., Rupp, K., Rudolf, F., & Selberherr, S. (2015). ViennaMaterials - A dedicated material library for computational science and engineering. Applied Mathematics and Computation, 267, 282–293. https://doi.org/10.1016/j.amc.2015.03.094

Downloads

Published

2023-05-24

How to Cite

Leni, D. (2023). Pemilihan Algoritma Machine Learning Yang Optimal Untuk Prediksi Sifat Mekanik Aluminium. Jurnal Engine: Energi, Manufaktur, Dan Material, 7(1), 35–44. https://doi.org/10.30588/jeemm.v7i1.1490

Issue

Section

Articles

Most read articles by the same author(s)