IDENTIFICATION OF KOREAN HANGUL LETTERS IN HANDWRITTEN IMAGES USING THE K-NEAREST NEIGHBORS METHOD

Authors

  • Lailatul Husni Universitas Proklamasi 45
  • EKo Puji Laksono Universitas Proklamasi 45
  • Landung Sudarmana Universitas Proklamasi 45
  • Agung Prayogo

Keywords:

Ginger Quality, Image Processing, K-Nearest Neighbor, Color And Texture.

Abstract

Ginger plant is one of the rhizome plants that turns out to have properties and benefits for health, especially to increase immunity. However, many people do not know and it is difficult to distinguish the type of rhizome plant. This type of rhizome plant can be identified based on the characteristics seen from its color and texture. Therefore, an appropriate method is needed to determine the quality of ginger based on the color and texture to be studied, namely by using image processing technology which is expected to be able to improve the quality of ginger.

In this research stage, the first to collect references, input data, pre-processing, design, texture and color, testing, KNN, KNN testing, analysis, is completed, is a process to determine the stage to determine the quality value of ginger based on color and texture using RGB and GLCM.

Based on the results of research that has been done, namely fresh red ginger, with RGB values, Red 237,878 - 235,713, Green 234,745 - 232,193 and Blue 233,627 - 230,808. Withered red ginger, Red 247,029 – 245,232, Green 245,319 – 243,878, and Blue 244,243,878. fresh white ginger, valued at Red 242,836 – 234,169, Green 237.03 – 223,701, and Blue 232,418 – 215,035. White ginger withered, Red 243,604 – 235,871, Green 238,617-227,344, and Blue 234,307 – 219,862. As for the GLCM feature value obtained from 40 ginger testing data images, it is 97.5%.

References

Kaharuddin, Kusrini, and E. T. Luthfi, “Klasifikasi Jenis Rempah-Rempah Berdasarkan Fitur Warna Rgb Dan Tekstur Menggunakan Algoritma K-Nearest Neighbor,” J. Inf. Interaktif, vol. 4, no. 1, pp. 17–22, 2019.

K. Q. Rukmana, Penetapan Kadar Flavonoid Total dan Penentuan Model Klasifikasi Serbuk Jahe Gajah (Z. officinalevar. officinale) dari Daerah Ketinggian Berbeda dengan Metode Spektroskopi NIR-Kemometrik. Skripsi. 2020.

F. Shidiq, “Penerapan Metode K-Nearest Neighbor (KNN) Untuk Menentukan Ikan Cupang Dengan Ekstraksi Fitur Ciri Bentuk Dan Canny,” Innov. Res. Informatics, vol. 3, no. 2, pp. 39–46, 2021, doi: 10.37058/innovatics.v3i2.3093.

J. Jumadi, Y. Yupianti, and D. Sartika, “Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering,” JST (Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 148–156, 2021, doi: 10.23887/jstundiksha.v10i2.33636.

H. Edha, S. H. Sitorus, and U. Ristian, “PENERAPAN METODE TRANSFORMASI RUANG WARNA HUE SATURATION INTENSITY (HSI) UNTUK MENDETEKSI KEMATANGAN BUAH MANGGA HARUM MANIS Hendryanto,” J. Komput. dan Apl., vol. 8, no. 1, pp. 1–10, 2020.

R. F. A. Surtarno, “Identifikasi Tanaman Buah Berdasarkan Fitur Bentuk, Warna dan Tekstur Daun Berbasis Pengolahan Citra dan Learning Vector Quantization(LVQ),” Annual Research Seminar (ARS), vol. 3, no. 1. pp. 65–70, 2017. [Online]. Available: https://seminar.ilkom.unsri.ac.id/index.php/ars/article/view/1742

D. A. Nugraha and A. S. Wiguna, “Seleksi Fitur Warna Citra Digital Biji Kopi Menggunakan Metode Principal Component Analysis,” Res. Comput. Inf. Syst. Technol. Manag., vol. 3, no. 1, p. 24, 2020, doi: 10.25273/research.v3i1.5352.

D. Sari and A. Nasuha, “Kandungan Zat Gizi, Fitokimia, dan Aktivitas Farmakologis pada Jahe (Zingiber officinale Rosc.),” Trop. Biosci. J. Biol. Sci., vol. 1, no. 2, p. p 11-18, 2021.

I. W. Redi Aryanta, “Manfaat Jahe Untuk Kesehatan,” Widya Kesehat., vol. 1, no. 2, pp. 39–43, 2019, doi: 10.32795/widyakesehatan.v1i2.463.

I. D. Kurniawati and A. Kusumawardhani, “Implementasi Algoritma Canny dalam Pengenalan Wajah menggunakan Antarmuka GUI Matlab,” J. Inst. Teknol. Sepuluh Nop., no. December, pp. 3–8, 2017.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

M. Rivki and A. M. Bachtiar, “Implementasi Algoritma K-Nearest Neighbor Dalam Pengklasifikasian Follower Twitter Yang Menggunakan Bahasa Indonesia,” J. Sist. Inf., vol. 13, no. 1, p. 31, 2017, doi: 10.21609/jsi.v13i1.500.

S. Ratna, “Pengolahan Citra Digital Dan Histogram Dengan Phyton Dan Text Editor Phycharm,” Technol. J. Ilm., vol. 11, no. 3, p. 181, 2020, doi: 10.31602/tji.v11i3.3294.

S. S. More, R. Bansode, A. Chaudhari, A. Pavate, and B. Rodrigues, “Android-Based Heart Monitoring Systems Android-Based Heart Monitoring Systems,” no. May, pp. 28–33, 2019.

E. Siswanto, “Komparasi Keefektifan Penerapan Model Pembelajaran Inkuiri Dan Ekspositori Dalam Meningkatkan Hasil Belajar Ipa Siswa Kelas 5 Di Mi Se Kecamatan Kepung Kabupaten Kediri,” pp. 63–95, 2017.

Downloads

Published

2025-01-06

How to Cite

Husni, L., Laksono, E. P., Sudarmana, L., & Prayogo, A. (2025). IDENTIFICATION OF KOREAN HANGUL LETTERS IN HANDWRITTEN IMAGES USING THE K-NEAREST NEIGHBORS METHOD. Jurnal Info.Tech, 1(1), 27–33. Retrieved from https://ejournal.up45.ac.id/index.php/Info-Tech/article/view/1787

Issue

Section

Articles

Most read articles by the same author(s)