Penerapan Model Isotermal untuk Adsorpsi Statik Xanthan pada Batuan Pasir untuk Berbagai Salinitas

Authors

  • Muhammad Taufiq Fathaddin Universitas Trisakti

DOI:

https://doi.org/10.30588/jo.v5i1.938

Keywords:

Xathan, Butir Pasir, Adsorpsi, Spektrophotometer, Salinitas

Abstract

Salah satu fenomena yang biasa terjadi selama injeksi polimer adalah adsorpsi. Fenomena ini memainkan peran penting, karena mereka mempengaruhi sifat batuan dan fluida. Adanya lapisan polimer teradsorpsi akan diameter pori. Hal ini akan menghambat  aliran fluida. Dalam kajian ini dilakukan pengamatan pengaruh konsentrasi dan salinitas terhadap adsorpsi xanthan pada butiran pasir dalam sistem statik (batch). Konsentrasi xanthan divariasikan dari 200 ppm hingga 2,000 ppm sedangkan salinitas divariasikan dari 10,000 ppm hingga 20,000 ppm. Butiran pasir yang digunakan berukuran pasir 100 mesh (0.149 mm). Percobaan dilakukan pada suhu ruang. Pengukuran absorben dilakukan dengan menggunakan spektrophotometer pada panjang gelombang cahaya tampak sebesar 600 nm. Tiga model adsorpsi isothermal digunakan dalam kajian ini yaitu Langmuir, Freundlich, dan Simha-Frish-Eirich untuk membuat korelasi antara konsentrasi partikel teradsorpsi dan konsentrasi larutan xanthan dalam kesetimbangan. Berdasarkan hal pengamatan disimpulkan bahwa tingkat adsorpsi berkurang dengan bertambahnya salinitas. Dalam kajian ini secara umum penerapan model Freundlich memberikan hasil terbaik dalam menggambarkan proses adsorpsi xanthan.

References

Abbas, S., Sanders, A.W., and Donovan, J.C. (2013). Applicability of Hydroxyethyl-cellulose Polymers for Chemical EOR. Society of Petroleum Engineers, SPE- 165311-MS. https://doi.org/10.2118/165311-MS.

Ali, M. and Mahmud, H.B. (2015). The effects of concentration and salinity on polymer adsorption isotherm at sandstone rock surface. IOP Conference Series: Materials Science and Engineering, 78(1).

https://doi.org/10.1088/1757-899X/78/1/012038

Alsehli, B.R.M. (2020). A Simple Approach for Determining the Maximum Sorption Capacity of Chlorpropham from Aqueous Solution onto Granular Activated Charcoal. Process, vol. 8, no. 4, pp. 7-9.

https://doi.org/10.3390/pr8040398.

Amro, M.M. (2008). Investigation of Polymer Adsorption on Rock Surface of High Saline Reservoirs. Society of Petroleum Engineers (SPE), SPE-120807-MS.

https://doi.org/10.2118/120807-MS.

Cal, M.P. (1995). Characterization of Gas Phase Adsorption Capacity of Untreated and Chemically Treated Activated Carbon Cloths, Ph.D Thesis, The University of Illinois, Urbana, pp. 16 – 19.

DaCosta, S. A. (2017). Characterization of Activated Carbon sample: Cu+2 Adsorption Isotherm. A Major Qualifying Project. Worcester Polytechnic Institute. Worcester.

Ebuzeme, I., Olatunji, O., and Olufemi, B. (2021). Factorial Design Validation of an Environmentally Benign Water-Based Drilling Fluid from Sweet Potato Peels at Elevated Temperatures. Society of Petroleum Engineers (SPE), SPE-207097-MS.

https://doi.org/10.2118/207097-MS.

Fajria, T. R. and Nuwarda, R. F. (2018). Teknologi Sediaan Oral Lapis Tipis Terlarut Cepat (Fast Dissolving Film). Majalah Farmasetika, 3(3), 58.https://doi.org/10.24198/farmasetika.v3i3.23341

Fathaddin, M.T. (2006). The Application of Lattice Gas Automata for Simulating Polymer Injection in Porous Media. Ph.D Thesis, Universiti Teknologi Malaysia, Johor Bahru.

Galya, D.P., and Clark, A.B.. (1990). Modeling Transport and Fate of Contaminants in Ground Water, in Cheremisinoff, N.P., (ed.), (1990), Encyclopedia of Fluid Mechanics, vol. 10, Houston: Gulf Publishing Co., pp. 595 – 609.

Langaas, K. and Stavland, A. (2019). Water Shut-off with Polymer in the Alvheim Field. Society of Petroleum Engineers (SPE), SPE-195485-MS. https://doi.org/10.2118/195485-MS.

Li, Q., Pu, W., Wei, B., Jin, F., & Li, K. (2018). Static adsorption and dynamic retention of an anti-salinity polymer in low permeability sandstone core. Journal of Applied Polymer Science, 134(8). https://doi.org/10.1002/app.44487

Manichand, R. N., and Seright, R. S. (2014). Field vs laboratory polymer retention values for a polymer flood in the Tambaredjo Field. Society of Petroleum Engineers, SPE-169027-PA

https://doi.org/10.2118/169027-PA

Ogofotha, G.O., Nwonodi, R.I., and, Chemezie-Nwosu, H.A.. (2020). Assessment of Local Clay from Different Localities in the Southern Region of Nigeria for Drilling Mud Formulation. Society of Petroleum Engineers (SPE), SPE-203686-MS.

https://doi.org/10.2118/203686-MS.

Solomon, U., Oluwaseun, T., and Olalekan, O. (2015). Alkaline-Surfactant-Polymer flooding for Heavy Oil Recovery from Strongly Water Wet Cores Using Sodium Hydroxide, Lauryl Sulphate, Shell Enordet 0242, Gum Arabic and Xanthan Gum. Society of Petroleum Engineers, SPE- 178366-MS. https://doi.org/10.2118/178366-MS.

Tobing, E. M. (2012). Pengaruh adsorpsi statik batuan reservoir minyak terhadap viskositas polimer polyacrylamide. Pusat Penelitian dan Pengembangan Teknologi Minyak dan Gas Bumi ‘LEMIGAS’, 10(2), 91–98.

Treybal, R.E., (1980), Mass-Transfer Operation, 3rd ed., Newyork: McGraw-Hill, pp. 581 – 582.

Volesky, B. (2003). Sorption and Biosorption. Quebec: BV-Sorbex. Inc., pp. 105 – 107.

Downloads

Published

2021-06-28

How to Cite

Fathaddin, M. T. (2021). Penerapan Model Isotermal untuk Adsorpsi Statik Xanthan pada Batuan Pasir untuk Berbagai Salinitas. Jurnal Offshore: Oil, Production Facilities and Renewable Energy, 5(1), 20–29. https://doi.org/10.30588/jo.v5i1.938