Strategi Implementasi Dye Sensitized Solar Cell (DSSC) di Indonesia

Authors

  • Andhika Daniswara Universitas Indonesia
  • Genta Raydiska
  • Yori Timotius

DOI:

https://doi.org/10.30588/jo.v4i2.835

Abstract

Pemerintah Indonesia telah mencanangkan Kebijakan Energi Nasional (KEN) yang menargetkan Indonesia menambah energi campuran yang berasal dari Energi Baru dan Terbarukan (EBT) pada tahun 2025 sebesar 23% dan pada tahun 2050 sebesar 31%. Dengan sumber energi surya yang melimpah di sekitar garis khatulistiwa, Pembangkit Listrik Tenaga Surya (PLTS) menjadi salah satu peluang alternatif EBT yang menjanjikan. Sayangnya, biaya investasi pemasangan panel surya konvensional berbahan baku silikon dengan tingkat kemurnian tinggi belum kompetitif. Dye-sensitized solar cell (DSSC) diprediksi akan menggantikan panel surya konvensional karena lebih ekonomis, mudah dibuat, serta lebih ramah lingkungan sehingga dapat meningkatkan target pemenuhan kebutuhan EBT berbasis tenaga surya. Berbeda dengan sistem konvensional di mana semikonduktor (Si) berperan sebagai penyerap cahaya sekaligus penghantar arus, kedua fungsi tersebut dijalankan oleh dua komponen berbeda pada DSSC, yakni sensitizer dan semikonduktor (TiO2). Cahaya diabsorbsi oleh lapisan sensitizer yang terikat pada semikonduktor TiO2. Arus dari elektron tereksitasi kemudian diinjeksi dari sensitizer ke pita konduksi padatan.  Penulis menggunakan studi literatur untuk mengulas beberapa strategi meningkatkan Photo Conversion Efficiency (PCE) berupa pemilihan material penyusun komponen DSSC dengan memanfaatkan material yang menghasilkan PCE yang tinggi, seperti N719 (11,18%), LD4 (10,06%), dan D149 (9%) sebagai penyusun fotoanoda, counter electrode, serta pewarna sensitizer secara berturut-turut. Setelah desain ditentukan, penulis menentukan langkah implementasi DSSC secara masif di Indonesia. 

Kata Kunci: DSSC, PCE, Fotoanoda, Sensitizer, Counter electrode

References

Lee, H., & Yoon, J. (2018). Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up. Applied Energy, 225, 1013-1021. doi: 10.1016/j.apenergy.2018.04.086

Fakharuddin, A., Jose, R., Brown, T., Fabregat-Santiago, F., & Bisquert, J. (2014). A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci., 7(12), 3952-3981. doi: 10.1039/c4ee01724b

Omar, A., Ali, M., & Abd Rahim, N. (2020). Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy, 207, 1088-1121. doi: 10.1016 j.solener.2020.07.028

Khan, M., Al-Mamun, M., Halder, P., & Aziz, M. (2017). Performance improvement of modified dye- sensitized solar cells. Renewable And Sustainable Energy Reviews, 71, 602-617. doi: 10.1016/j.rser.2016.12.087

Babar, F., Mehmood, U., Asghar, H., Mehdi, M., Khan, A., & Khalid, H. et al. (2020). Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review. Renewable And Sustainable Energy Reviews, 129, 109919. doi: 10.1016/j.rser.2020.109919

Mustafa, M., & Sulaiman, Y. (2021). Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells. Solar Energy, 215, 26-43. doi: 10.1016/j.solener.2020.12.030

Sharma, K., Sharma, V., & Sharma, S. (2018). Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 13(1). doi: 10.1186/s11671-018-2760-6

Sima, C, et al (2010). Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Journal Thin Solid Films,vol 519 : pg 595 - 597. DOI :10.1016/j.tsf.2010.07.002.

Mozaffari, Samaneh; Nateghi, Mohammad Reza; Zarandi, Mahmood Borhani (2017). An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 71(), 675–686. doi:10.1016/j.rser.2016.12.096

J. M. Kroon; N. J. Bakker; H. J. P. Smit; P. Liska; K. R. Thampi; P. Wang; S. M. Zakeeruddin; M. Grätzel; A. Hinsch; S. Hore; U. Würfel; R. Sastrawan; J. R. Durrant; E. Palomares; H. Pettersson; T. Gruszecki; J. Walter; K. Skupien; G. E. Tulloch (2007). Nanocrystalline dye-sensitized solar cells having maximum performance. , 15(1), 1–18. doi:10.1002/pip.707

Hua, Yong; Chang, Shuai; Huang, Dandan; Zhou, Xuan; Zhu, Xunjin; Zhao, Jianzhang; Chen, Tao; Wong, Wai-Yeung; Wong, Wai-Kwok (2013). Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. Chemistry of Materials, 25(10), 2146–2153. doi:10.1021/cm400800h

Liang, Mao; Xu, Wei; Cai, Fengshi; Chen, Peiquan; Peng, Bo; Chen, Jun; Li, Zhengming (2007). New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 111(11), 4465–4472. doi:10.1021/jp067930a

(Coumarine) Hara, Kohjiro; Kurashige, Mitsuhiko; Dan-oh, Yasufumi; Kasada, Chiaki; Shinpo, Akira; Suga, Sadaharu; Sayama, Kazuhiro; Arakawa, Hironori (2003). Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells., 27(5), 783–785. doi:10.1039/b300694h

(Indoline) S. Ito; S. M. Zakeeruddin; R. Humphry-Baker; P. Liska; R. Charvet; P. Comte; M. K. Nazeeruddin; P. Péchy; M. Takata; H. Miura; S. Uchida; M. Grätzel (2006). High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. , 18(9), 1202–1205. doi:10.1002/adma.200502540

(Zn Porphyrins) Wang, Chin-Li; Chang, Yu-Cheng; Lan, Chi-Ming; Lo, Chen-Fu; Wei-Guang Diau, Eric; Lin, Ching-Yao (2011). Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energy & Environmental Science, 4(5), 1788–. doi:10.1039/c0ee00767f

(Black Dye) Polo, A. S., Itokazu, M. K., & Murakami Iha, N. Y. (2004). Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews, 248(13-14), 1343–1361. doi:10.1016/j.ccr.2004.04.013

(Z910) Kuang, Daibin; Ito, Seigo; Wenger, Bernard; Klein, Cedric; Moser, Jacques-E; Humphry-Baker, Robin; Zakeeruddin, Shaik M.; Grätzel, Michael (2006). High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 128(12), 4146–4154. doi:10.1021/ja058540p

Baxter, Jason B. (2012). Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30(2), 020801–. doi:10.1116/1.3676433

Downloads

Published

2020-12-23

How to Cite

Daniswara, A., Raydiska, G., & Timotius, Y. (2020). Strategi Implementasi Dye Sensitized Solar Cell (DSSC) di Indonesia. Jurnal Offshore: Oil, Production Facilities and Renewable Energy, 4(2). https://doi.org/10.30588/jo.v4i2.835