Strategi Implementasi Dye Sensitized Solar Cell (DSSC) di Indonesia
DOI:
https://doi.org/10.30588/jo.v4i2.835Abstract
Pemerintah Indonesia telah mencanangkan Kebijakan Energi Nasional (KEN) yang menargetkan Indonesia menambah energi campuran yang berasal dari Energi Baru dan Terbarukan (EBT) pada tahun 2025 sebesar 23% dan pada tahun 2050 sebesar 31%. Dengan sumber energi surya yang melimpah di sekitar garis khatulistiwa, Pembangkit Listrik Tenaga Surya (PLTS) menjadi salah satu peluang alternatif EBT yang menjanjikan. Sayangnya, biaya investasi pemasangan panel surya konvensional berbahan baku silikon dengan tingkat kemurnian tinggi belum kompetitif. Dye-sensitized solar cell (DSSC) diprediksi akan menggantikan panel surya konvensional karena lebih ekonomis, mudah dibuat, serta lebih ramah lingkungan sehingga dapat meningkatkan target pemenuhan kebutuhan EBT berbasis tenaga surya. Berbeda dengan sistem konvensional di mana semikonduktor (Si) berperan sebagai penyerap cahaya sekaligus penghantar arus, kedua fungsi tersebut dijalankan oleh dua komponen berbeda pada DSSC, yakni sensitizer dan semikonduktor (TiO2). Cahaya diabsorbsi oleh lapisan sensitizer yang terikat pada semikonduktor TiO2. Arus dari elektron tereksitasi kemudian diinjeksi dari sensitizer ke pita konduksi padatan. Penulis menggunakan studi literatur untuk mengulas beberapa strategi meningkatkan Photo Conversion Efficiency (PCE) berupa pemilihan material penyusun komponen DSSC dengan memanfaatkan material yang menghasilkan PCE yang tinggi, seperti N719 (11,18%), LD4 (10,06%), dan D149 (9%) sebagai penyusun fotoanoda, counter electrode, serta pewarna sensitizer secara berturut-turut. Setelah desain ditentukan, penulis menentukan langkah implementasi DSSC secara masif di Indonesia.
Kata Kunci: DSSC, PCE, Fotoanoda, Sensitizer, Counter electrode
References
Lee, H., & Yoon, J. (2018). Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up. Applied Energy, 225, 1013-1021. doi: 10.1016/j.apenergy.2018.04.086
Fakharuddin, A., Jose, R., Brown, T., Fabregat-Santiago, F., & Bisquert, J. (2014). A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci., 7(12), 3952-3981. doi: 10.1039/c4ee01724b
Omar, A., Ali, M., & Abd Rahim, N. (2020). Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy, 207, 1088-1121. doi: 10.1016 j.solener.2020.07.028
Khan, M., Al-Mamun, M., Halder, P., & Aziz, M. (2017). Performance improvement of modified dye- sensitized solar cells. Renewable And Sustainable Energy Reviews, 71, 602-617. doi: 10.1016/j.rser.2016.12.087
Babar, F., Mehmood, U., Asghar, H., Mehdi, M., Khan, A., & Khalid, H. et al. (2020). Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review. Renewable And Sustainable Energy Reviews, 129, 109919. doi: 10.1016/j.rser.2020.109919
Mustafa, M., & Sulaiman, Y. (2021). Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells. Solar Energy, 215, 26-43. doi: 10.1016/j.solener.2020.12.030
Sharma, K., Sharma, V., & Sharma, S. (2018). Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 13(1). doi: 10.1186/s11671-018-2760-6
Sima, C, et al (2010). Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Journal Thin Solid Films,vol 519 : pg 595 - 597. DOI :10.1016/j.tsf.2010.07.002.
Mozaffari, Samaneh; Nateghi, Mohammad Reza; Zarandi, Mahmood Borhani (2017). An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 71(), 675–686. doi:10.1016/j.rser.2016.12.096
J. M. Kroon; N. J. Bakker; H. J. P. Smit; P. Liska; K. R. Thampi; P. Wang; S. M. Zakeeruddin; M. Grätzel; A. Hinsch; S. Hore; U. Würfel; R. Sastrawan; J. R. Durrant; E. Palomares; H. Pettersson; T. Gruszecki; J. Walter; K. Skupien; G. E. Tulloch (2007). Nanocrystalline dye-sensitized solar cells having maximum performance. , 15(1), 1–18. doi:10.1002/pip.707
Hua, Yong; Chang, Shuai; Huang, Dandan; Zhou, Xuan; Zhu, Xunjin; Zhao, Jianzhang; Chen, Tao; Wong, Wai-Yeung; Wong, Wai-Kwok (2013). Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. Chemistry of Materials, 25(10), 2146–2153. doi:10.1021/cm400800h
Liang, Mao; Xu, Wei; Cai, Fengshi; Chen, Peiquan; Peng, Bo; Chen, Jun; Li, Zhengming (2007). New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 111(11), 4465–4472. doi:10.1021/jp067930a
(Coumarine) Hara, Kohjiro; Kurashige, Mitsuhiko; Dan-oh, Yasufumi; Kasada, Chiaki; Shinpo, Akira; Suga, Sadaharu; Sayama, Kazuhiro; Arakawa, Hironori (2003). Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells., 27(5), 783–785. doi:10.1039/b300694h
(Indoline) S. Ito; S. M. Zakeeruddin; R. Humphry-Baker; P. Liska; R. Charvet; P. Comte; M. K. Nazeeruddin; P. Péchy; M. Takata; H. Miura; S. Uchida; M. Grätzel (2006). High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. , 18(9), 1202–1205. doi:10.1002/adma.200502540
(Zn Porphyrins) Wang, Chin-Li; Chang, Yu-Cheng; Lan, Chi-Ming; Lo, Chen-Fu; Wei-Guang Diau, Eric; Lin, Ching-Yao (2011). Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energy & Environmental Science, 4(5), 1788–. doi:10.1039/c0ee00767f
(Black Dye) Polo, A. S., Itokazu, M. K., & Murakami Iha, N. Y. (2004). Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews, 248(13-14), 1343–1361. doi:10.1016/j.ccr.2004.04.013
(Z910) Kuang, Daibin; Ito, Seigo; Wenger, Bernard; Klein, Cedric; Moser, Jacques-E; Humphry-Baker, Robin; Zakeeruddin, Shaik M.; Grätzel, Michael (2006). High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 128(12), 4146–4154. doi:10.1021/ja058540p
Baxter, Jason B. (2012). Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30(2), 020801–. doi:10.1116/1.3676433
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Jurnal Offshore right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in Jurnal Offshore. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Offshore. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).