Enhancing Renewable Energy Power Generation through the Exploration of Laser Technology

Authors

  • Syamsul Ma'arif Industrial Engineering, Universitas Sarjanawiyata Tamansiswa
  • Irwanuddin H. I. Kulla Center for Nuclear Innovation and Renewable Energy Studies, Indonesian Muslim Intellectual Association (PUSPINEBT-ICMI)
  • Lia Yunita Petroleum Engineering, Universitas Proklamasi 45

DOI:

https://doi.org/10.30588/jo.v7i2.1739

Keywords:

laser technology, renewable energy, power generation, efficiency sustainability

Abstract

This research aims to investigate the utilization of laser technology in improving the performance of power generation systems from renewable energy sources, focusing on solar, wind, hydropower, and biomass energy. A literature review and comprehensive analysis were conducted using a descriptive and synthetic data analysis method. The discussion results indicate that laser technology can significantly contribute to the utilization of renewable energy. In solar power generation systems, laser technology enhances solar radiation absorption in solar thermophotovoltaics applications and flexible solar panel designs. In wind power generation systems, laser technology is employed in long-range wind flow measurement using LiDAR, wind turbine load validation, and improving wind turbine control. In hydropower generation systems, laser technology protects and monitors water turbine blades to prevent erosion and damage. In biomass power generation systems, laser technology is employed for chemical element detection in the energy conversion process and analysis of biomass properties. In conclusion, using laser technology in power generation from renewable energy sources offers significant potential for enhancing efficiency, performance, sustainability, and environmental friendliness.

References

Aridito, M. N., & Ma’arif, S. (2019). Potensi Energi Listrik dari Sampah Berbasis Gasifikasi di Kawasan Village Center Bali. Prosiding Konferensi Nasional Engineering Perhotelan X, 391-395.

Beenackers, A. A., & Maniatis, K. (1998). Gasification technologies for heat and power from biomass. Fuel and Energy Abstracts, 1(39), 36. doi:10.1016/S0140-6701(98)93896-6

Borraccino, A. (2017). Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing. DTU Wind Energy. doi:10.11581/DTU:00000021

Bos, R., Giyanani, A., & Bierbooms, W. (2016). Assessing the severity of wind gusts with lidar. Remote Sensing, 8(9), 758. doi:10.3390/rs8090758

Ciappi, A., Giorgetti, A., Ceccanti, F., & Canegallo, G. (2021). Technological and economic consideration for turbine blade tip restoration through metal deposition technologies. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(10), 1741-1758. doi:10.1177/0954406219888245

Dahlquist, E. (2013). An overview of thermal biomass conversion technologies. In Technologies for Converting Biomass to Useful Energy (pp. 43-46). London: CRC Press. doi:10.1201/b14561

Desta, D., Ram, S. K., Rizzoli, R., Bellettato, M., Summonte, C., Jeppesen, B. R., . . . Larsen, A. N. (2016). Novel back-reflector architecture with nanoparticle-based buried light-scattering microstructures for improved solar cell performance. Nanoscale, 8(23), 12035-12046. doi:10.1039/C6NR00259E

Dimitrov, N., Borraccino, A., Peña, A., Natarajan, A., & Mann, J. (2019). Wind turbine load validation using lidar‐based wind retrievals. Wind Energy, 22(11), 1512-1533. doi:10.1002/WE.2385

Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy strategy reviews, 24, 38-50. doi:10.1016/j.esr.2019.01.006

Goit, J. P., Shimada, S., & Kogaki, T. (2019). Can LiDARs replace meteorological masts in wind energy? Energies, 12(19), 3680. doi:10.3390/en12193680

Gupta, M. C., & Carlson, D. E. (2015). Laser processing of materials for renewable energy applications. MRS Energy & Sustainability, 2, E2. doi:10.1557/mre.2015.3

Hwang, S., An, Y. K., & Sohn, H. (2017). Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia Engineering, 188, 225-232. doi:10.1016/j.proeng.2017.04.478

Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S., & Karuppasamy, K. S. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, 7, 100118. doi:10.1016/j.nexus.2022.100118

Khodasevych, I. E., Wang, L., Mitchell, A., & Rosengarten, G. (2015). Micro‐and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 3(7), 852-881. doi:10.1002/adom.201500063

Li, J., & Yu, X. B. (2017). LiDAR technology for wind energy potential assessment: Demonstration and validation at a site around Lake Erie. Energy Conversion and Management, 144, 252-261. doi:10.1016/j.enconman.2017.04.061

Li, Z., Tokhi, M. O., & Zhao, Z. (2020). A compact laser shearography system integrated with robotic climber for on-site inspection of wind turbine blades. 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (pp. 212-219). Moscow, Russian Federation: CLAWAR Association. doi:10.13180/clawar.2020.24-26.08.43

Li, Z., Tokhi, M. O., Zhao, Z., & Zheng, H. (2021). A compact laser shearography system for on-site robotic inspection of wind turbine blades. Journal of Artificial Intelligence and Technology, 1(3), 166-173. doi:10.37965/jait.2021.0008

Ma’arif, S. (2019). Potensi Energi Listrik Hasil Gasifikasi Sampah Organik dari Wisatawan di Pantai Parangtritis. Prosiding Konferensi Nasional Engineering Perhotelan X, 405-409.

Ma'arif, S. (2023). Pengembangan Sistem Teknologi Kerakyatan untuk Mendukung Ketahanan Energi Nasional. In Seabad Tamansiswa: Jejak Langkah Menghidupi Jiwa Merdeka dan Berkarakter (pp. 249-266). Yogyakarta: Penerbit Kepel Press.

Ma'arif, S., & Wardoyo, W. (2020). Potential of Electric Energy from Waste in Kaliurang Tourism Area, Sleman, Special Region of Yogyakarta. Conserve: Journal of Energy and Environmental Studies, 4(1), 1-8.

Ma'arif, S., Sari, R. J., & Syamsiro, M. (2016). Studi Kelayakan Ekonomi Pembangunan PLTD Sistem Dual Fuel dengan Gasifikasi Sekam Padi Kapasitas 50 kVA. Jurnal Mekanika dan Sistem Termal, 1(1), 26-31.

Ma'arif, S., Susanti, D. A., Rezalti, D. T., Irmaya, A. I., Yunita, L., Damayanti, D., & Wahyuningtyas, Y. F. (2022). A Review of Strategies for Managing Uncertainty in Crude Oil Prices by Indonesian Oil and Gas Companies and the Government. Jurnal Offshore: Oil, Production Facilities and Renewable Energy, 6(2), 68-84. doi:http://dx.doi.org/10.30588/jo.v6i2.1449

Ma'arif, S., Widyawidura, W., Aridito, M. N., Kurniasari, H. D., & Kismurtono, M. (2019). Waste-to-Energy Development Using Organic Waste Recycling System (OWRS): A Study Case of Giwangan Market. International Journal of Renewable Energy Research (IJRER), 9(1), 354-362.

Nedelcu, D., Gillich, G. R., Gerocs, A., & Padurean, I. (2020). A comparative study between photogrammetry and laser technology applied on model turbine blades. Journal of Physics: Conference Series. 1426, p. 012026. Hunedoara, Romania: IOP Publishing. doi:10.1088/1742-6596/1426/1/012026

Peharz, G., Kuna, L., & Leiner, C. (2015). Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules. Physics, Simulation, and Photonic Engineering of Photovoltaic Devices IV. 9358, pp. 231-240. SPIE. doi:10.1117/12.2077118

Pupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, M. (2019). Large-scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy, 186, 115805. doi:10.1016/j.energy.2019.07.135

Scholbrock, A., Fleming, P., Schlipf, D., Wright, A., Johnson, K., & Wang, N. (2016). Lidar-enhanced wind turbine control: Past, present, and future. 2016 American Control Conference (ACC) (pp. 1399-1406). Boston, MA, USA: IEEE. doi:10.1109/ACC.2016.7525113

Schuerhoff, J., Ghicov, A., & Sattler, K. (2015). Advanced water droplet erosion protection for modern low pressure steam turbine steel blades. Turbo Expo: Power for Land, Sea, and Air. 56796, p. V008T26A026. Montreal, Quebec, Canada: American Society of Mechanical. doi:10.1115/GT2015-43140

Syamsiro, M., Aridito, M. N., & Ma'arif, S. (2020). Potential Application of Sago Pulp Briquette for Electricity Generation Using Gasification Technology in Papua Province, Indonesia. Key Engineering Materials, 849, 20-26. doi:10.4028/www.scientific.net/KEM.849.20

Tursunov, O., & Dobrowolski, J. W. (2015). A brief review of application of laser biotechnology as an efficient mechanism for the increase of biomass for bio-energy production via clean thermo-technologies. American Journal of Renewable and Sustainable Energy, 1(2), 66-71.

Viljanen, J. (2019). Online Laser Diagnostics for High-Temperature Chemistry in Biomass Combustion. Tampere, Finland: Tampere University. Retrieved from http://urn.fi/URN:ISBN:978-952-03-1022-6

Wang, H., Wang, J., Tian, W., Bao, Z., Wang, B., & Gou, Y. (2023). Application of Lidar in Comparison of Wind Speed and Wind Direction Meters in Wind Power Field. E3S Web of Conferences. 375, p. 02004. EDP Sciences. doi:10.1051/e3sconf/202337502004

Wang, L., Weller, C. L., Jones, D. D., & Hanna, M. A. (2008). Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and bioenergy, 32(7), 573-581. doi:10.1016/j.biombioe.2007.12.007

Zhang, Y., Dong, M., Cheng, L., Wei, L., Cai, J., & Lu, J. (2020). Improved measurement in quantitative analysis of coal properties using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 35(4), 810-818. doi:10.1039/C9JA00429G

Downloads

Additional Files

Published

2023-12-19

How to Cite

Ma'arif, S., Kulla, I. H. I., & Yunita, L. (2023). Enhancing Renewable Energy Power Generation through the Exploration of Laser Technology. Jurnal Offshore: Oil, Production Facilities and Renewable Energy, 7(2), 59–67. https://doi.org/10.30588/jo.v7i2.1739

Most read articles by the same author(s)