Teknologi dan Karakterisasi dalam Proses Produksi Arang Sekam Padi untuk Berbagai Aplikasi: Tinjauan Pustaka

Authors

  • Muhamad Muhajir Politeknik Negeri Tanah Laut, Kalimantan Selatan, Indonesia
  • Adhielia Noer Syaief Politeknik Negeri Tanah Laut, Kalimantan Selatan, Indonesia
  • Pratama Yoga Wica Politeknik Negeri Tanah Laut, Kalimantan Selatan, Indonesia

DOI:

https://doi.org/10.30588/jeemm.v9i2.2356

Abstract

Sekam padi merupakan limbah pertanian yang melimpah dengan potensi tinggi untuk diolah menjadi arang (biochar) melalui pirolisis sebagai bagian dari strategi pengelolaan biomassa berkelanjutan. Studi ini bertujuan untuk meninjau secara komprehensif teknologi dan karakterisasi yang terlibat dalam produksi arang sekam padi, serta mengevaluasi aplikasinya di berbagai sektor. Tinjauan ini dilakukan dengan pendekatan naratif, menganalisis literatur ilmiah terkini (2019–2024) yang relevan dengan sistem pirolisis berbasis tungku kisi miring dan metode karakterisasi biochar, seperti morfologi, kristalinitas, dan analisis gugus fungsi. Hasil penelitian menunjukkan bahwa sistem tungku kisi miring memberikan kontrol termal yang optimal, menghasilkan biochar berkualitas tinggi dengan struktur pori yang berkembang baik, stabilitas karbon yang baik, dan potensi tinggi untuk adsorpsi dan retensi hara. Biochar yang berasal dari sekam padi juga terbukti efektif sebagai amandemen tanah, penyerap polutan, penopang katalis, aditif semen, dan bahan bakar alternatif. Karakteristik ini sangat dipengaruhi oleh parameter proses dan desain reaktor. Temuan ini menggarisbawahi pentingnya pendekatan interdisipliner dalam mengoptimalkan teknologi biomassa. Studi ini berkontribusi pada pengembangan strategi produksi biochar yang lebih efisien dan menyediakan dasar untuk penelitian lebih lanjut tentang stabilitas jangka panjang dan dampak lingkungan dari penerapannya.

References

Asirifi, I., Kaetzl, K., Werner, S., Setsoafia Saba, C. K., Abagale, F. K., Amoah, P., & Marschner, B. (2021). Pathogen and Heavy Metal Contamination in Urban Agroecosystems of Northern Ghana: Influence of Biochar Application and Wastewater Irrigation. Journal of Environmental Quality. https://doi.org/10.1002/jeq2.20260

Azlan Halmi, M. F., & Simarani, K. (2024). Response of Soil Microbial Glycoside Hydrolase Family 6 Cellulolytic Population to Lignocellulosic Biochar Reveals Biochar Stability Toward Microbial Degradation. Journal of Environmental Quality. https://doi.org/10.1002/jeq2.20588

Barakat, N. A. M., Irfan, O. M., & Moustafa, H. M. (2022). H3po4/Koh Activation Agent for High Performance Rice Husk Activated Carbon Electrode in Acidic Media Supercapacitors. Molecules. https://doi.org/10.3390/molecules28010296

Campos, P., Miller, A. Z., Knicker, H., Pereira, M. F. C., Merino, A., & de Arranz, J. M. (2020). Chemical, Physical and Morphological Properties of Biochars Produced From Agricultural Residues: Implications for Their Use as Soil Amendment. Waste Management. https://doi.org/10.1016/j.wasman.2020.02.013

Castiglioni, M., Rivoira, L., Ingrando, I., Bubba, M. D., & Bruzzoniti, M. C. (2021). Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review. Molecules, 26(16), 5063. https://doi.org/10.3390/molecules26165063

Dang, D., Mei, L., Yan, G., & Liu, W. (2023). Synthesis of Nanoporous Biochar From Rice Husk for Adsorption of Methylene Blue. Journal of Chemistry. https://doi.org/10.1155/2023/6624295

Dey, T., Bhattacharjee, T., Nag, P., Ritika, R., Ghati, A., & Kuila, A. (2021). Valorization of Agro-Waste Into Value Added Products for Sustainable Development. Bioresource Technology Reports. https://doi.org/10.1016/j.biteb.2021.100834

Duan, S., AL‐Huqail, A. A., Alsudays, I. M., Younas, M., Aslam, A., Shahzad, A. N., Qayyum, M. F., Rizwan, M. S., Hamoud, Y. A., Shaghaleh, H., & Hong Yong, J. W. (2024). Effects of Biochar Types on Seed Germination, Growth, Chlorophyll Contents, Grain Yield, Sodium, and Potassium Uptake by Wheat (Triticum Aestivum L.) Under Salt Stress. BMC Plant Biology. https://doi.org/10.1186/s12870-024-05188-0

El-Naggar, N. E. A., El-Malkey, S. E., Abu-Saied, M. A., & Mohammed, A. B. A. (2022). Exploration of a novel and efficient source for production of bacterial nanocellulose, bioprocess optimization and characterization. Scientific Reports, 12(1), 1–22. https://doi.org/10.1038/s41598-022-22240-x

El-Naggar, N. E. A., Mohammed, A. B. A., & El-Malkey, S. E. (2023). Bacterial nanocellulose production using Cantaloupe juice, statistical optimization and characterization. Scientific Reports, 13(1), 1–25. https://doi.org/10.1038/s41598-022-26642-9

Fouladidorhani, M., Shayannejad, M., & Arthur, E. (2021). Evaluation of the Potential of Feedstock Combinations and Their Biochars for Soil Amendment. Waste Management & Research the Journal for a Sustainable Circular Economy. https://doi.org/10.1177/0734242x211060611

Gonçalves Matoso, S. C., Salvador Wadt, P. G., de Júnior, V. S., Otero, X. L., & Plotegher, F. (2020). Variation in the Properties of Biochars Produced by Mixing Agricultural Residues and Mineral Soils for Agricultural Application. Waste Management & Research the Journal for a Sustainable Circular Economy. https://doi.org/10.1177/0734242x20935180

Kang, Y., Chun, J., Yun, Y.-U., Lee, J.-Y., Sung, J., & Oh, T. (2024a). Pyrolysis Temperature and Time of Rice Husk Biochar Potentially Control Ammonia Emissions and Chinese Cabbage Yield From Urea-Fertilized Soils. Scientific Reports. https://doi.org/10.1038/s41598-024-54307-2

Kang, Y., Chun, J., Yun, Y.-U., Lee, J.-Y., Sung, J., & Oh, T. (2024b). Pyrolysis Temperature and Time of Rice Husk Biochar Potentially Control Ammonia Emissions and Chinese Cabbage Yield From Urea-Fertilized Soils. Scientific Reports. https://doi.org/10.1038/s41598-024-54307-2

Kaya, N., Özkeser, E. C., & Uzun, Z. Y. (2023). Investigating the Effectiveness of Rice Husk-Derived Low-Cost Activated Carbon in Removing Environmental Pollutants: A Study of Its Characterization. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2023.2246584

Mai Hương, P. T., Hiền Chu, T. T., Nguyen, K. D., Oanh Le, T. K., Obaid, S. Al, Alharbi, S. A., Kim, J.-T., & Viet, N. M. (2022). Alginate-Modified Biochar Derived From Rice Husk Waste for Improvement Uptake Performance of Lead in Wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135956

Mort, R., Vorst, K., Curtzwiler, G., & Jiang, S. (2021). Biobased foams for thermal insulation: material selection, processing, modelling, and performance. RSC Advances, 11(8), 4375–4394. https://doi.org/10.1039/d0ra09287h

Moyo, G. G., Hu, Z., & Getahun, M. D. (2020). Decontamination of Xenobiotics in Water and Soil Environment Through Potential Application of Composite Maize Stover/Rice Husk (MS/RH) Biochar—a Review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-09163-8

Mulyono, E. E., Ruslan, M., Priatmadi, B. J., & Yusran, F. H. (2021). Organic Material Selection for Soil Amendment on Mine Reclamation With Analytic Hierarchy Process. Environmental Quality Management. https://doi.org/10.1002/tqem.21807

Munarso, S. J., & Mulyawanti, I. (2023). Effect of Adsorbent From Activated Rice Husk Charcoal on the Characteristics of Crude Palm Oil (CPO); A Preliminary Study. Iop Conference Series Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1172/1/012054

Nam, T. S., Thao, H. Van, Chiếm, N. H., Van, C. N., & Tarao, M. (2022). Rice Husk and Melaleuca Biochar Additions Reduce Soil CH4 and N2O Emissions and Increase Soil Physicochemical Properties. F1000research. https://doi.org/10.12688/f1000research.74041.2

Nayak, P. P., & Datta, A. (2023). Synthesis and Characterization of Si/SiO2/SiC Composites Through Carbothermic Reduction of Rice Husk-Based Silica. Silicon. https://doi.org/10.1007/s12633-022-02278-2

Okida, S., Dohi, H., Kudo, S., Wada, S., Shishido, T., Okuyama, N., Asano, S., & Hayashi, J. (2024). Enhancing the Strength of Formed Coke From Woody Biomass With the Addition of Biomass Extracts. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.4c02892

Ortega-Ramírez, A. T., Tovar, M. R., & Silva-Marrufo, Ó. (2024). Rice Husk Reuse as a Sustainable Energy Alternative in Tolima, Colombia. Scientific Reports. https://doi.org/10.1038/s41598-024-60115-5

Premchand, P., Demichelis, F., Galletti, C., Chiaramonti, D., Bensaid, S., Antunes, E., & Fino, D. (2024). Enhancing Biochar Production: A Technical Analysis of the Combined Influence of Chemical Activation (KOH and NaOH) and Pyrolysis Atmospheres (N2/Co2) on Yields and Properties of Rice Husk-Derived Biochar. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2024.123034

Qayyum, M. F., Khan, D.-S., Suliman Alghanem, S. M., S. Alhaithloul, H. A., Alsudays, I. M., Rizwan, M., & Hong Yong, J. W. (2024). Agricultural Waste-Based Modified Biochars Differentially Affected the Soil Properties, Growth, and Nutrient Accumulation by Maize (Zea Mays L.) Plants. BMC Plant Biology. https://doi.org/10.1186/s12870-024-05202-5

S. Piyathissa, S. D., Kahandage, P. D., Namgay, N., Zhang, H., Noguchi, R., & Ahamed, T. (2023a). Introducing a Novel Rice Husk Combustion Technology for Maximizing Energy and Amorphous Silica Production Using a Prototype Hybrid Rice Husk Burner to Minimize Environmental Impacts and Health Risk. Energies. https://doi.org/10.3390/en16031120

S. Piyathissa, S. D., Kahandage, P. D., Namgay, N., Zhang, H., Noguchi, R., & Ahamed, T. (2023b). Introducing a Novel Rice Husk Combustion Technology for Maximizing Energy and Amorphous Silica Production Using a Prototype Hybrid Rice Husk Burner to Minimize Environmental Impacts and Health Risk. Energies. https://doi.org/10.3390/en16031120

Si, D., Lin, Y., Xu, Q., & Zhang, S. (2025). Effects of Biochar on Rainwater Redistribution, Soil Water Evaporation and Desiccation Cracking: A Case Study of Limestone Soil in Karst Areas of Southwest China. The Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2025.178692

Singh, S. V., Chaturvedi, S., Dhyani, V., & Govindaraju, K. (2020). Pyrolysis Temperature Influences the Characteristics of Rice Straw and Husk Biochar and Sorption/Desorption Behaviour of Their Biourea Composite. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.123674

Su, Y., Liu, L., Zhang, S., Xu, D., Du, H., Cheng, Y., Wang, Z., & Xiong, Y. (2020). A Green Route for Pyrolysis Poly-Generation of Typical High Ash Biomass, Rice Husk: Effects on Simultaneous Production of Carbonic Oxide-Rich Syngas, Phenol-Abundant Bio-Oil, High-Adsorption Porous Carbon and Amorphous Silicon Dioxide. Bioresource Technology. https://doi.org/10.1016/j.biortech.2019.122243

Suleman, D., Resman, R., Syaf, H., Namriah, N., Suaib, S., Alam, S., Yusuf, D. N., & Nurmashita Mbay, W. O. (2024). Change of Soil Chemical Properties and the Growth of Pogostemon Cablin Benth on Nickel-Mined Soil Amended With Rice Husk Charcoal. Journal of Degraded and Mining Lands Management. https://doi.org/10.15243/jdmlm.2024.112.5353

Tsai, C.-Y., Lin, P., Hsieh, S., Kirankumar, R., Patel, A. K., Singhania, R. R., Dong, C., Chen, C., & Hsieh, S. (2022). Engineered Mesoporous Biochar Derived From Rice Husk for Efficient Removal of Malachite Green From Wastewaters. Bioresource Technology. https://doi.org/10.1016/j.biortech.2022.126749

Williams, R., Belo, J. B., Lidia, J., de Soares, S. G., Ribeiro, D., Moreira, C. L., Almeida, L. de, Barton, L., & Erskine, W. (2023). Productivity Gains in Vegetables From Rice Husk Biochar Application in Nutrient-Poor Soils in Timor-Leste. Scientific Reports. https://doi.org/10.1038/s41598-023-38072-2

Yiga, V. A., Nuwamanya, A., Birungi, A., Lubwama, M., & Lubwama, H. N. (2023). Development of Carbonized Rice Husks Briquettes: Synergy Between Emissions, Combustion, Kinetics and Thermodynamic Characteristics. Energy Reports. https://doi.org/10.1016/j.egyr.2023.05.066

Downloads

Published

2025-11-30

How to Cite

Muhamad Muhajir, Adhielia Noer Syaief, & Pratama Yoga Wica. (2025). Teknologi dan Karakterisasi dalam Proses Produksi Arang Sekam Padi untuk Berbagai Aplikasi: Tinjauan Pustaka. Jurnal Engine: Energi, Manufaktur, Dan Material, 9(2), 265–275. https://doi.org/10.30588/jeemm.v9i2.2356

Issue

Section

Articles