REVIEW: Perkembangan Sel Surya Perovskite
DOI:
https://doi.org/10.30588/jeemm.v9i1.2141Keywords:
Development, Perovskite, Efficiency, Solar Cells, Renewable energyAbstract
Perovskite is one of the materials used for solar panels that offers high efficiency comparable to conventional silicon-based solar cells. This article aims to analyze the latest developments in perovskite solar cells from various important aspects, starting from material development, various fabrication techniques, as well as opportunities and challenges in its development. Perovskite is a type of material that has a crystal structure with the chemical formula ABX3. Perovskite fabrication can be done using various methods such as spin coating, spray coating, doctor blading, inkjet printing and others. In its development, various innovations have been made, such as the development of cells without a hole transport layer (HTL-free), the addition of ethylenediammonium cations (en), and efforts to replace lead with more environmentally friendly materials such as tin. The results of the study showed that the power conversion efficiency (PCE) of perovskite solar cells has reached more than 25%. Although this development is promising, there are still major challenges in maintaining the long-term stability of the device, especially related to degradation due to humidity, heat, and prolonged lighting. The development of fabrication techniques that can mass produce perovskite solar cells with high performance and stable reliability is essential. With continued research and material innovation, perovskite solar cells have great potential in supporting sustainable clean energy transitions such as their applications in building-integrated photovoltaic (BIPV) systems, wearable electronic devices, and agrivoltaic systems.
References
Afre, R. A., & Pugliese, D. (2024a, Februari 1). Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies. Micromachines, Vol. 15. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/mi15020192
Aftab, S., Nawaz, T., & Bilal Tahir, M. (2021, Desember 1). Recent development in shape memory based perovskite materials for energy conversion and storage applications. International Journal of Energy Research, Vol. 45, hlm. 20545–20558. John Wiley and Sons Ltd. https://doi.org/10.1002/er.7151
Ansari, M. I. H., Qurashi, A., & Nazeeruddin, M. K. (2018, Juni 1). Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 35, hlm. 1–24. Elsevier B.V. https://doi.org/10.1016/j.jphotochemrev.2017.11.002
Assi, A. A., Saleh, W. R., & Mohajerani, E. (2021). Effect of Metals ( Au, Ag, and Ni) as Cathode Electrode on Perovskite Solar Cells. IOP Conference Series: Earth and Environmental Science, 722(1). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/722/1/012019
Badillo, P. D., & Degterev, A. E. (2023). Perspectives on Perovskite Solar Cells Under the Glass of Characterization and Model-based Research. 2023 XXVI International Conference on Soft Computing and Measurements (SCM), 277–280. IEEE. https://doi.org/10.1109/SCM58628.2023.10159103
Bahtiar, A., & Sartika, Y. (2019). PENGARUH VOLUME LARUTAN METILAMONIUM TIMBAL IODIDA (CH3NH3PBI3) TERHADAP KINERJA SEL SURYA PEROVSKITE STRUKTUR MESOPORI TANPA LAPISAN TRANSPOR HOLE (HTL-FREE) BERBASIS KARBON. Dalam Jurnal Ilmu dan Inovasi Fisika) (Vol. 03).
Chen, H., Teale, S., Chen, B., Hou, Y., Grater, L., Zhu, T., … Sargent, E. H. (2022). Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nature Photonics, 16(5), 352–358. https://doi.org/10.1038/s41566-022-00985-1
Cotella, G., Baker, J., Worsley, D., De Rossi, F., Pleydell-Pearce, C., Carnie, M., & Watson, T. (2017). One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Solar Energy Materials and Solar Cells, 159, 362–369. https://doi.org/10.1016/j.solmat.2016.09.013
Gong, C., Tong, S., Huang, K., Li, H., Huang, H., Zhang, J., & Yang, J. (2020). Flexible Planar Heterojunction Perovskite Solar Cells Fabricated via Sequential Roll-to-Roll Microgravure Printing and Slot-Die Coating Deposition. Solar RRL, 4(2). https://doi.org/10.1002/solr.201900204
He, X., Guo, P., Wu, J., Tu, Y., Lan, Z., Lin, J., & Huang, M. (2017). Hybrid perovskite by mixing formamidinium and methylammonium lead iodides for high-performance planar solar cells with efficiency of 19.41%. Solar Energy, 157, 853–859. https://doi.org/10.1016/j.solener.2017.09.014
Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., … Seok, S. Il. (2013). Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6), 486–491. https://doi.org/10.1038/nphoton.2013.80
Hering, A. R., Dubey, M., & Leite, M. S. (2023). Emerging opportunities for hybrid perovskite solar cells using machine learning. APL Energy, 1(2). https://doi.org/10.1063/5.0146828
Howard, I. A., Abzieher, T., Hossain, I. M., Eggers, H., Schackmar, F., Ternes, S., … Paetzold, U. W. (2019). Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 31(26). https://doi.org/10.1002/adma.201806702
Hu, Q., Xiong, Y., & Xu, Z. (2024). Perovskite photovoltaic effect and its application on solar cell. Applied and Computational Engineering, 60(1), 63–68. https://doi.org/10.54254/2755-2721/60/20240836
Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088–4093. https://doi.org/10.1039/c1nr10867k
Im, J.-H., Kim, H.-S., & Park, N.-G. (2014). Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL MATERIALS, 2(8). https://doi.org/10.1063/1.4891275
Jeong, M., Woo Choi, I., Min Go, E., Cho, Y., Kim, M., Lee, B., … Yang, C. (2020). Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Diambil dari https://www.science.org
Jiang, Q., Tong, J., Xian, Y., Kerner, R. A., Dunfield, S. P., Xiao, C., … Zhu, K. (2022). Surface reaction for efficient and stable inverted perovskite solar cells. Nature, 611(7935), 278–283. https://doi.org/10.1038/s41586-022-05268-x
Jiang, Xianyuan, Zang, Z., Zhou, Y., Li, H., Wei, Q., & Ning, Z. (2021). Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Technology. Accounts of Materials Research, 2(4), 210–219. https://doi.org/10.1021/accountsmr.0c00111
Jiang, Xiaoqing, Zhang, J., Ahmad, S., Tu, D., Liu, X., Jia, G., … Li, C. (2020). Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy, 75. https://doi.org/10.1016/j.nanoen.2020.104892
Jokar, E., Chien, C., Tsai, C., Fathi, A., & Diau, E. W. (2019). Robust Tin‐Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Advanced Materials, 31(2). https://doi.org/10.1002/adma.201804835
Jung, H. S., & Park, N. G. (2015, Januari 7). Perovskite solar cells: From materials to devices. Small, Vol. 11, hlm. 10–25. Wiley-VCH Verlag. https://doi.org/10.1002/smll.201402767
Ke, W., & Kanatzidis, M. G. (2019, Desember 1). Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, Vol. 10. Nature Publishing Group. https://doi.org/10.1038/s41467-019-08918-3
Ke, W., Stoumpos, C. C., Zhu, M., Mao, L., Spanopoulos, I., Liu, J., … Kanatzidis, M. G. (2017). A P P L I E D S C I E N C E S A N D E N G I N E E R I N G Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3. Diambil dari https://www.science.org
Khorasani, A., Mohamadkhani, F., Marandi, M., Luo, H., & Abdi‐Jalebi, M. (2024). Opportunities, Challenges, and Strategies for Scalable Deposition of Metal Halide Perovskite Solar Cells and Modules. Advanced Energy and Sustainability Research, 5(7). https://doi.org/10.1002/aesr.202300275
Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., … Park, N. G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2. https://doi.org/10.1038/srep00591
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r
Ku, Z., Xia, X., Shen, H., Tiep, N. H., & Fan, H. J. (2015). A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale, 7(32), 13363–13368. https://doi.org/10.1039/c5nr03610k
Lee, D. G., Kim, M. cheol, Kim, B. J., Kim, D. H., Lee, S. M., Choi, M., … Jung, H. S. (2019). Effect of TiO2 particle size and layer thickness on mesoscopic perovskite solar cells. Applied Surface Science, 477, 131–136. https://doi.org/10.1016/j.apsusc.2017.11.124
Lee, D. K., Jeong, D. N., Ahn, T. K., & Park, N. G. (2019). Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency. ACS Energy Letters, 4(10), 2393–2401. https://doi.org/10.1021/acsenergylett.9b01735
Lee, D. K., & Park, N. G. (2022, Maret 1). Materials and Methods for High-Efficiency Perovskite Solar Modules. Solar RRL, Vol. 6. John Wiley and Sons Inc. https://doi.org/10.1002/solr.202100455
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643–647. https://doi.org/10.1126/science.1228604
Li, P., Liang, C., Bao, B., Li, Y., Hu, X., Wang, Y., … Song, Y. (2018). Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy, 46, 203–211. https://doi.org/10.1016/j.nanoen.2018.01.049
Li, X., Zhang, W., Guo, X., Lu, C., Wei, J., & Fang, J. (2022). Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Diambil dari https://www.science.org
Li, Z., Li, B., Wu, X., Sheppard, S. A., Zhang, S., Gao, D., … Zhu, Z. (2022). Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Diambil dari https://www.science.org
Lin, R., Xu, J., Wei, M., Wang, Y., Qin, Z., Liu, Z., … Tan, H. (2022). All-perovskite tandem solar cells with improved grain surface passivation. Nature, 603(7899), 73–78. https://doi.org/10.1038/s41586-021-04372-8
Liu, C., Yang, Y., Chen, H., Spanopoulos, I., Bati, A. S. R., Gilley, I. W., … Kanatzidis, M. G. (2024). Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature, 633(8029), 359–364. https://doi.org/10.1038/s41586-024-07764-8
Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395–398. https://doi.org/10.1038/nature12509
Liu, S., Biju, V. P., Qi, Y., Chen, W., & Liu, Z. (2023, Desember 1). Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Materials, Vol. 15. Nature Research. https://doi.org/10.1038/s41427-023-00474-z
Ma, Y., & Zhao, Q. (2021). A strategic review on processing routes towards scalable fabrication of perovskite solar cells. Journal of Energy Chemistry, 64, 538–560. https://doi.org/10.1016/j.jechem.2021.05.019
Min, H., Kim, M., Lee, S.-U., Kim, H., Kim, G., Choi, K., … Seok, S. Il. (2019). SOLAR CELLS Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Diambil dari http://science.sciencemag.org/
Mousavi, S. M., Hashemi, S. A., Yari Kalashgrani, M., Kurniawan, D., Gholami, A., & Chiang, W.-H. (2022). Bioresource-Functionalized Quantum Dots for Energy Generation and Storage: Recent Advances and Feature Perspective. Nanomaterials, 12(21), 3905. https://doi.org/10.3390/nano12213905
Nair, S., Patel, S. B., & Gohel, J. V. (2020, September 1). Recent trends in efficiency-stability improvement in perovskite solar cells. Materials Today Energy, Vol. 17. Elsevier Ltd. https://doi.org/10.1016/j.mtener.2020.100449
Park, H. H. (2021). Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials. Nanomaterials, 12(1), 112. https://doi.org/10.3390/nano12010112
Park, M., Cho, W., Lee, G., Hong, S. C., Kim, M. cheol, Yoon, J., … Choi, M. (2019). Highly Reproducible Large-Area Perovskite Solar Cell Fabrication via Continuous Megasonic Spray Coating of CH3NH3PbI3. Small, 15(1). https://doi.org/10.1002/smll.201804005
Peng, X., Yuan, J., Shen, S., Gao, M., Chesman, A. S. R., Yin, H., … Angmo, D. (2017, November 3). Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects. Advanced Functional Materials, Vol. 27. Wiley-VCH Verlag. https://doi.org/10.1002/adfm.201703704
Raj, A., Kumar, M., & Anshul, A. (2023). Topical advances in fabrication technologies of perovskite solar cell heterostructures: Performance and future perspective. Materials Letters, 340, 134171. https://doi.org/10.1016/j.matlet.2023.134171
Rastiadi, H. A. (2023). Pengaruh Ketebalan Lapisan Film Tipis TiO2 Nanopartikel Terhadap Sifat Optik dan Listrik Sel Surya Perovskite CH3NH3PbI3. Universitas Pendidikan Indonesia, Bandung.
Roy, P., Kumar Sinha, N., Tiwari, S., & Khare, A. (2020, Maret 1). A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy, Vol. 198, hlm. 665–688. Elsevier Ltd. https://doi.org/10.1016/j.solener.2020.01.080
Sajid, S., Khan, S., Khan, A., Khan, D., Issakhov, A., & Park, J. (2021). Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells. Solar Energy, 225, 1001–1008. https://doi.org/10.1016/j.solener.2021.08.015
Saleh, F., Hazaea, Z., Hazaea, Z. A. M., Ghaleb, A., & Murshed, F. (2023). Perovskite Solar Cells (PSCs): Definition, Structure, and Solar Cells Development. International Journal of Innovative Science and Research Technology. https://doi.org/10.5281/zenodo.7765612
Samantaray, N., Parida, B., Soga, T., Sharma, A., Kapoor, A., Najar, A., & Singh, A. (2022). Recent Development and Directions in Printed Perovskite Solar Cells. physica status solidi (a), 219(6). https://doi.org/10.1002/pssa.202100629
Shen, X., Gallant, B. M., Holzhey, P., Smith, J. A., Elmestekawy, K. A., Yuan, Z., … Snaith, H. J. (2023). Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells. Advanced Materials, 35(30). https://doi.org/10.1002/adma.202211742
Srivastava, A., Satrughna, J. A. K., Tiwari, M. K., Kanwade, A., Yadav, S. C., Bala, K., & Shirage, P. M. (2023). Lead metal halide perovskite solar cells: Fabrication, advancement strategies, alternatives, and future perspectives. Materials Today Communications, 35, 105686. https://doi.org/10.1016/j.mtcomm.2023.105686
Sun, B. (2024). Advances and Prospects of 3D Semiconductor Nanocomposite Materials for Solar Cells in Renewable Energy. Applied and Computational Engineering, 91(1), 21–26. https://doi.org/10.54254/2755-2721/91/20241107
Sun, J., Li, F., Yuan, J., & Ma, W. (2021). Advances in Metal Halide Perovskite Film Preparation: The Role of Anti‐Solvent Treatment. Small Methods, 5(5). https://doi.org/10.1002/smtd.202100046
Suresh Kumar, N., & Chandra Babu Naidu, K. (2021). A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 7(5), 940–956. https://doi.org/10.1016/j.jmat.2021.04.002
Sutanto, A. A., Caprioglio, P., Drigo, N., Hofstetter, Y. J., Garcia-Benito, I., Queloz, V. I. E., … Grancini, G. (2021). 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem, 7(7), 1903–1916. https://doi.org/10.1016/j.chempr.2021.04.002
Tang, J., Jiao, D., Zhang, L., Zhang, X., Xu, X., Yao, C., … Lan, Z. (2018). High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals. Solar Energy, 161, 100–108. https://doi.org/10.1016/j.solener.2017.12.045
Tseng, Z. L., Chen, L. C., Chiang, C. H., Chang, S. H., Chen, C. C., & Wu, C. G. (2016). Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Solar Energy, 139, 484–488. https://doi.org/10.1016/j.solener.2016.10.005
Vicente, J. R., & Chen, J. (2018). Perovskite Solar Cells. https://doi.org/10.1081/E-ECHP-140000328
Wei, Q., Zi, W., Yang, Z., & Yang, D. (2018). Photoelectric performance and stability comparison of MAPbI3 and FAPbI3 perovskite solar cells. Solar Energy, 174, 933–939. https://doi.org/10.1016/j.solener.2018.09.057
Whitaker, J. B., Kim, D. H., Larson, B. W., Zhang, F., Berry, J. J., van Hest, M. F. A. M., & Zhu, K. (2018). Scalable slot-die coating of high performance perovskite solar cells. Sustainable Energy & Fuels, 2(11), 2442–2449. https://doi.org/10.1039/C8SE00368H
Yang, M., Wang, H., Cai, W., & Zang, Z. (2023). Mixed‐Halide Inorganic Perovskite Solar Cells: Opportunities and Challenges. Advanced Optical Materials, 11(20). https://doi.org/10.1002/adom.202301052
Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. Il. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234–1237. https://doi.org/10.1126/science.aaa9272
Yang, Y., You, J., Hong, Z., Chen, Q., Cai, M., Song, T. Bin, … Zhou, H. (2014). Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 8(2), 1674–1680. https://doi.org/10.1021/nn406020d
Zhang, C. C., Wang, Z. K., Li, M., Liu, Z. Y., Yang, J. E., Yang, Y. G., … Ma, H. (2018). Electric-field assisted perovskite crystallization for high-performance solar cells. Journal of Materials Chemistry A, 6(3), 1161–1170. https://doi.org/10.1039/c7ta08204e
Zhang, T., Long, M., Qin, M., Lu, X., Chen, S., Xie, F., … Xu, J. bin. (2018). Stable and Efficient 3D-2D Perovskite-Perovskite Planar Heterojunction Solar Cell without Organic Hole Transport Layer. Joule, 2(12), 2706–2721. https://doi.org/10.1016/j.joule.2018.09.022
Zhao, J., Deng, Y., Li, T., Gruverman, A., Shield, J., & Huang, J. (2016). Is Cu a Stable Electrode Material in Hybrid Perovskite Solar Cells for 30 Years Lifetime?
Zheng, L., Ma, Y., Wang, Y., Xiao, L., Zhang, F., & Yang, H. (2017). Hole Blocking Layer-Free Perovskite Solar Cells with over 15% Efficiency. Energy Procedia, 105, 188–193. Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.03.300
Zhou, D., Zhou, T., Tian, Y., Zhu, X., & Tu, Y. (2018). Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials, Vol. 2018. Hindawi Limited. https://doi.org/10.1155/2018/8148072
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., … Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542–546. https://doi.org/10.1126/science.1254050
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Noto Susanto Gultom, Ihsanul Mubarok, Hafsah Mutmainnah, Wina Mardhatillah, Ayi Bahtiar, Richie Estrada, Aisyah Amirah Fathinah (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Engine: Energi, Manufaktur, dan Material agree to the following terms:
Authors retain copyright and grant the Jurnal Engine: Energi, Manufaktur, dan Material right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in Jurnal Engine: Energi, Manufaktur, dan Material. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Engine: Energi, Manufaktur, dan Material. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).