Aplikasi Machine Learning untuk Mendeteksi Kematangan Tomat menggunakan Metode Backpropagation
DOI:
https://doi.org/10.30588/jeemm.v8i1.1815Keywords:
Machine Learning, Tomato, Image Extraction, BackpropagationAbstract
The rapid development of artificial intelligence has now been widely used in various industrial fields, with various benefits that make it easier, speed up work processes, automate and be efficient in resources to improve cyber security and can be implemented easily and of course will continue to be developed further, such as In the agricultural industry, artificial intelligence can be used to identify certain types of fruit or plant leaves and their level of maturity. This research will create a machine learning application to identify the level of ripeness of tomatoes with 3 types of tomatoes, old tomatoes, young tomatoes and rotten tomatoes. From each type of tomato there are 50 object images in the form of images in .jpg format, of which 15 object images are used as training data and 35 images as test data to detect tomato images using the Backpropagation method which will utilize image feature extraction in the form of RGB colors. The results obtained from testing images of young, old and rotten tomatoes obtained an accuracy rate of 83%.
References
Aprilisa, S., & Sukemi. (2019). Klasifikasi Tingkat Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan K-Nearest Neighhbor. Prosiding Annual Research Seminar 2019, 5(1), 978–979.
B, H. I. N., Herman, M., Nurhikma, & Kaswar, B. A. (2021). Klasifikasi Tingkat Kualitas Dan Kematangan Buah Tomat Berdasarkanfiturwarnamenggunakanjaringansyaraftiruan. Jessi, 02(May), 18–23.
Cahyanti, S., Hikmayanti, H., & Sulistya, D. (2021). Identifikasi Kematangan Buah Tomat Berdasarkan Warna Menggunakan Metode Hue Saturation Value. Scientific Student Journal for Information, Technology and Science, II(1), 177–183.
Fahira, B., & Salahuddin. (2023). IMPLEMENTASI METODE BACKPROPAGATION PADA PERAMALAN BEBAN LISTRIK JANGKA PANJANG DI LHOKSEUMAWE. 12, 9–13.
Johan, T. M., & Rifna, I. (2022). Identifikasi Kematangan Buah Tomat Berdasarkan Warna Menggunakan Metode Jaringan Syaraf Tiruan (Jst) Backpropagation. Jurnal TIKA, 7(3), 309–315. https://doi.org/10.51179/tika.v7i3.1647
Junnaeni, Mahati, E., & Maharani, N. (2019). Ekstrak Tomat (Lycopersicon Esculentum Mill.) Menurunkan Kadar Glutation Darah Tikus Wistar Hiperurisemia. Jurnal Kedokteran Diponegoro, 8(2), 758–767.
Nandel Syofneri, Sarjon Defit, & Sumijan. (2019). Implementasi Metode Backpropagation untuk Memprediksi Tingkat Kelulusan Uji Kopetensi Siswa. Jurnal Informasi & Teknologi, 1(4), 12–17. https://doi.org/10.37034/jidt.v1i4.13
Pongrambing, Y. S., Pitrianti, S., Sadno, M., Admawati, H., & Sampetoding, E. (2023). Peran dan Peluang Kecerdasan Buatan dalam Proses Bisnis UMKM. ININNAWA: Jurnal Pengabdian Kepada Masyarkat, 1(2), 201–206.
Prabowo, D. A., & Abdullah, D. (2018). Deteksi dan Perhitungan Objek Berdasarkan Warna Menggunakan Color Object Tracking. Pseudocode, 5(2), 85–91. https://doi.org/10.33369/pseudocode.5.2.85-91
Putra, I. K. A. H., Adnyana, I. W. B., Dewi, D. A. S., Komaladewi, A. A. I. A. S., Penindra, I. M. D. B., & Setiawati, N. L. P. L. S. (2023). IMPLEMENTASI COLLABORATIVE ROBOTS ARTIFICIAL INTELLIGENCE PADA OTOMATISASI INSPEKSI KENDARAAN UNTUK MENINGKATKAN KINERJA. Jurnal Riset Dan Aplikasi Teknik Industri, 1(04), 22–28.
Putra, I. M. D. U., Gandiadhi, G. K., & Harini, L. P. I. (2016).
Implementasi Backpropagation Neural Network Dalam Prakiraan Cuaca Di Daerah Bali Selatan. E-Jurnal Matematika, 5(4), 126. https://doi.org/10.24843/mtk.2016.v05.i04.p131
Putriana, A. D., Canta, D. S., Hadisaputro, E. L., & Wahyuni, N. (2022). Implementasi Backpropagation untuk Identifikasi Tanda Tangan Digital. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(1), 11. https://doi.org/10.36499/jinrpl.v4i1.4996
Setiawan, S. I. A. (2011). Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6. Jurnal ULTIMATICS, 3(2), 23–28. https://doi.org/10.31937/ti.v3i2.301
Sugiartha, & Gusti Rai Agung, I. (2016). Ekstraksi Warna, Tekstur Dan Bentuk Untuk Image Retrieval. Seminar Nasional Teknologi Informasi Dan Multimedia , 6–7.
Sutikno, Indriyati, Sukmawati, N. E., Priyo, S. S., Helmie, A. W., Indra, W., Nurdin, B., Wardati, T., Raditya, L., & Putu, D. (2016). Chapter 7 Backpropagation dan Aplikasinya. Ilmu Komputer Studi Kasus Dan Aplikasi, 135–146.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with Jurnal Engine: Energi, Manufaktur, dan Material agree to the following terms:
Authors retain copyright and grant the Jurnal Engine: Energi, Manufaktur, dan Material right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in Jurnal Engine: Energi, Manufaktur, dan Material. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Engine: Energi, Manufaktur, dan Material. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).