Aplikasi Machine Learning untuk Mendeteksi Kematangan Tomat menggunakan Metode Backpropagation

Authors

  • Sapriani Gustina Universitas Proklamasi 45, Yogyakarta

DOI:

https://doi.org/10.30588/jeemm.v8i1.1815

Keywords:

Machine Learning, Tomato, Image Extraction, Backpropagation

Abstract

The rapid development of artificial intelligence has now been widely used in various industrial fields, with various benefits that make it easier, speed up work processes, automate and be efficient in resources to improve cyber security and can be implemented easily and of course will continue to be developed further, such as In the agricultural industry, artificial intelligence can be used to identify certain types of fruit or plant leaves and their level of maturity. This research will create a machine learning application to identify the level of ripeness of tomatoes with 3 types of tomatoes, old tomatoes, young tomatoes and rotten tomatoes. From each type of tomato there are 50 object images in the form of images in .jpg format, of which 15 object images are used as training data and 35 images as test data to detect tomato images using the Backpropagation method which will utilize image feature extraction in the form of RGB colors. The results obtained from testing images of young, old and rotten tomatoes obtained an accuracy rate of 83%.

Author Biography

Sapriani Gustina, Universitas Proklamasi 45, Yogyakarta

Program Studi Teknologi Informasi

References

Aprilisa, S., & Sukemi. (2019). Klasifikasi Tingkat Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan K-Nearest Neighhbor. Prosiding Annual Research Seminar 2019, 5(1), 978–979.

B, H. I. N., Herman, M., Nurhikma, & Kaswar, B. A. (2021). Klasifikasi Tingkat Kualitas Dan Kematangan Buah Tomat Berdasarkanfiturwarnamenggunakanjaringansyaraftiruan. Jessi, 02(May), 18–23.

Cahyanti, S., Hikmayanti, H., & Sulistya, D. (2021). Identifikasi Kematangan Buah Tomat Berdasarkan Warna Menggunakan Metode Hue Saturation Value. Scientific Student Journal for Information, Technology and Science, II(1), 177–183.

Fahira, B., & Salahuddin. (2023). IMPLEMENTASI METODE BACKPROPAGATION PADA PERAMALAN BEBAN LISTRIK JANGKA PANJANG DI LHOKSEUMAWE. 12, 9–13.

Johan, T. M., & Rifna, I. (2022). Identifikasi Kematangan Buah Tomat Berdasarkan Warna Menggunakan Metode Jaringan Syaraf Tiruan (Jst) Backpropagation. Jurnal TIKA, 7(3), 309–315. https://doi.org/10.51179/tika.v7i3.1647

Junnaeni, Mahati, E., & Maharani, N. (2019). Ekstrak Tomat (Lycopersicon Esculentum Mill.) Menurunkan Kadar Glutation Darah Tikus Wistar Hiperurisemia. Jurnal Kedokteran Diponegoro, 8(2), 758–767.

Nandel Syofneri, Sarjon Defit, & Sumijan. (2019). Implementasi Metode Backpropagation untuk Memprediksi Tingkat Kelulusan Uji Kopetensi Siswa. Jurnal Informasi & Teknologi, 1(4), 12–17. https://doi.org/10.37034/jidt.v1i4.13

Pongrambing, Y. S., Pitrianti, S., Sadno, M., Admawati, H., & Sampetoding, E. (2023). Peran dan Peluang Kecerdasan Buatan dalam Proses Bisnis UMKM. ININNAWA: Jurnal Pengabdian Kepada Masyarkat, 1(2), 201–206.

Prabowo, D. A., & Abdullah, D. (2018). Deteksi dan Perhitungan Objek Berdasarkan Warna Menggunakan Color Object Tracking. Pseudocode, 5(2), 85–91. https://doi.org/10.33369/pseudocode.5.2.85-91

Putra, I. K. A. H., Adnyana, I. W. B., Dewi, D. A. S., Komaladewi, A. A. I. A. S., Penindra, I. M. D. B., & Setiawati, N. L. P. L. S. (2023). IMPLEMENTASI COLLABORATIVE ROBOTS ARTIFICIAL INTELLIGENCE PADA OTOMATISASI INSPEKSI KENDARAAN UNTUK MENINGKATKAN KINERJA. Jurnal Riset Dan Aplikasi Teknik Industri, 1(04), 22–28.

Putra, I. M. D. U., Gandiadhi, G. K., & Harini, L. P. I. (2016).

Implementasi Backpropagation Neural Network Dalam Prakiraan Cuaca Di Daerah Bali Selatan. E-Jurnal Matematika, 5(4), 126. https://doi.org/10.24843/mtk.2016.v05.i04.p131

Putriana, A. D., Canta, D. S., Hadisaputro, E. L., & Wahyuni, N. (2022). Implementasi Backpropagation untuk Identifikasi Tanda Tangan Digital. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(1), 11. https://doi.org/10.36499/jinrpl.v4i1.4996

Setiawan, S. I. A. (2011). Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6. Jurnal ULTIMATICS, 3(2), 23–28. https://doi.org/10.31937/ti.v3i2.301

Sugiartha, & Gusti Rai Agung, I. (2016). Ekstraksi Warna, Tekstur Dan Bentuk Untuk Image Retrieval. Seminar Nasional Teknologi Informasi Dan Multimedia , 6–7.

Sutikno, Indriyati, Sukmawati, N. E., Priyo, S. S., Helmie, A. W., Indra, W., Nurdin, B., Wardati, T., Raditya, L., & Putu, D. (2016). Chapter 7 Backpropagation dan Aplikasinya. Ilmu Komputer Studi Kasus Dan Aplikasi, 135–146.

Downloads

Published

2024-05-30

How to Cite

Gustina, S. (2024). Aplikasi Machine Learning untuk Mendeteksi Kematangan Tomat menggunakan Metode Backpropagation. Jurnal Engine: Energi, Manufaktur, Dan Material, 8(1), 81–88. https://doi.org/10.30588/jeemm.v8i1.1815

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.